Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 403: 123842, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33264923

ABSTRACT

With the number of easily accessible ores depleting, alternate primary and secondary sources are required to meet the increasing demand of economically important metals. Whilst highly abundant, these materials are of lower grade with respect to traditional ores, thus highly selective and sustainable metal extraction technologies are needed to reduce processing costs. Here, we investigated the metal leaching potential of biogenic ammonia produced by a ureolytic strain of Lysinibacillus sphaericus on eight primary and secondary materials, comprised of mining and metallurgical residues, sludges and automotive shredder residues (ASR). For the majority of materials, moderate to high yields (30-70%) and very high selectivity (>97% against iron) of copper and zinc were obtained with 1 mol L-1 total ammonia. Optimal leaching was achieved and further refined for the ASR in a two-step indirect leaching system with biogenic ammonia. Copper leaching was the result of local corrosion and differences in leaching against the synthetic (NH4)2CO3 control could be accounted for by pH shifts from microbial metabolism, subsequently altering free NH3 required for coordination. These results provide important findings for future sustainable metal recovery technologies from secondary materials.


Subject(s)
Copper , Zinc , Ammonia , Bacillaceae , Minerals
2.
J Environ Manage ; 279: 111525, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33168303

ABSTRACT

Alum sludge, an Al-oxyhydroxide rich waste product from water treatment practices, has the potential to be valorized as a P adsorbent material. However, several challenges currently prevent its application as an adsorbent in industrial setting, i.e. a limited P adsorption capacity due to saturation by organic matter and a fine nature resulting in percolation problems in adsorption bed setups. In this study, granulation and subsequent calcination of alum sludge were proposed to overcome these issues and to improve the P adsorption properties of alum-based adsorbent (ABA) materials. The effect of calcination temperature on the physicochemical properties of granular material was examined using X-ray diffraction, mass-spectroscopy coupled thermogravimetric analysis, Fourier-transform infrared spectrometry and specific surface area analysis, combined with density and crushing strength measurements. The ABA material obtained at 550 °C showed superior P adsorption properties and, therefore, this material was selected for further P adsorption testing and characterization (scanning electron microscopy and sieving). Batch P adsorption tests showed that this material had a maximum P adsorption capacity of 7.27 mg-P g-1. Kinetic adsorption tests determined the effect of the solid-to-liquid ratio and the granule particle size on the P removal. Finally, the performance of the ABA-550 material was tested in a pilot-scale adsorption setup, using a surface water stream (0.47 mg-P L-1) at a flow rate of 200 L h-1. During the test, the P removal efficiency always exceeded 86%, while the material maintained its structural stability. The results of this study illustrate the potential of granulated/calcined ABA materials for P adsorption, paving the way for the industrial application of this novel, sustainable P removal technology.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Alum Compounds , Hydrogen-Ion Concentration , Kinetics , Phosphorus , Sewage
SELECTION OF CITATIONS
SEARCH DETAIL
...