Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Pers Med ; 14(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38929829

ABSTRACT

In peripheral nerve surgery, neuropathology and neural anatomy intersect with the complexities of injury and dysfunction [...].

2.
J Pers Med ; 12(10)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36294687

ABSTRACT

(1) Background: Peripheral nerve injuries are severe injuries with potentially devastating impairment of extremity function. Correct and early diagnosis as well as regular regeneration observation is of utmost importance for individualized reconstruction and the best possible results. Currently, diagnoses and follow-up examinations are based on clinical examinations supported with electroneurography, which often causes delays in treatment and can result in impaired healing. However, there is currently no diagnostic device that can reliably correlate the anatomic-pathological parameters with the functional-pathological changes initially and during therapy. With new technologies such as MR neurography (MRN), precise visualization of potential nerve damage and visualization of the reinnervation processes is assumed to accelerate clinical decision making and accompaniment of individualized treatment. (2) Methods/Design: This prospective clinical study will examine 60 patients after peripheral nerve lesion aged 18-65 years from trauma timepoint onward. Patients should be observed over a period of 18-24 months with regular clinical examinations, electroneurography, and ultrasound to compare the potential of MRN to current gold-standard diagnostic tools. Furthermore, 20 patients with the same inclusion criteria stated above, with an internal fixation and osteosyntheses of humerus fractures, will be examined to determine the visibility of peripheral nerve structures in close proximity to metal. (3) Discussion: Peripheral nerve injuries are often accompanied with severe, expensive, and long-lasting impairment of extremity function. An early and precise diagnosis of the nerve lesion, as well as the healing course, is crucial to indicate the right therapy as soon as possible to save valuable time for nerve regeneration. Here, new technologies such as MRN aim to visualize nerve injuries on fascicular level, providing not only early diagnosis and therapy decisions, but also providing a precise tool for monitoring of reinnervation processes. As severe injuries of a nerve are often accompanied with bone fractures and internal fixation, we also aim to evaluate the visualization feasibility of nerves in close proximity to metal, and ultimately improve the outcome and extremity function of patients after a peripheral nerve injury.

3.
Elife ; 102021 10 01.
Article in English | MEDLINE | ID: mdl-34596042

ABSTRACT

Surgical nerve transfers are used to efficiently treat peripheral nerve injuries, neuromas, phantom limb pain, or improve bionic prosthetic control. Commonly, one donor nerve is transferred to one target muscle. However, the transfer of multiple nerves onto a single target muscle may increase the number of muscle signals for myoelectric prosthetic control and facilitate the treatment of multiple neuromas. Currently, no experimental models are available. This study describes a novel experimental model to investigate the neurophysiological effects of peripheral double nerve transfers to a common target muscle. In 62 male Sprague-Dawley rats, the ulnar nerve of the antebrachium alone (n=30) or together with the anterior interosseus nerve (n=32) was transferred to reinnervate the long head of the biceps brachii. Before neurotization, the motor branch to the biceps' long head was transected at the motor entry point. Twelve weeks after surgery, muscle response to neurotomy, behavioral testing, retrograde labeling, and structural analyses were performed to assess reinnervation. These analyses indicated that all nerves successfully reinnervated the target muscle. No aberrant reinnervation was observed by the originally innervating nerve. Our observations suggest a minimal burden for the animal with no signs of functional deficit in daily activities or auto-mutilation in both procedures. Furthermore, standard neurophysiological analyses for nerve and muscle regeneration were applicable. This newly developed nerve transfer model allows for the reliable and standardized investigation of neural and functional changes following the transfer of multiple donor nerves to one target muscle.


Subject(s)
Muscle, Skeletal/physiology , Nerve Transfer/methods , Peripheral Nerve Injuries/surgery , Peripheral Nerves/surgery , Animals , Forelimb/surgery , Male , Muscle, Skeletal/surgery , Nerve Regeneration/physiology , Rats , Rats, Sprague-Dawley , Ulnar Nerve/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...