Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 400: 130698, 2024 May.
Article in English | MEDLINE | ID: mdl-38615967

ABSTRACT

The growing textile industry produces large volumes of hazardous wastewater containing dyes, which stresses the need for cheap, efficient adsorbing technologies. This study investigates a novel preprocessing method for producing activated carbons from abundantly available softwood bark. The preprocessing involved a continuous steam explosion preconditioning step, chemical activation with ZnCl2, pyrolysis at 600 and 800 °C, and washing. The activated carbons were subsequently characterized by SEM, XPS, Raman and FTIR prior to evaluation for their effectiveness in adsorbing reactive orange 16 and two synthetic dyehouse effluents. Results showed that the steam-exploded carbon, pyrolyzed at 600 °C, obtained the highest BET specific surface area (1308 m2/g), the best Langmuir maximum adsorption of reactive orange 16 (218 mg g-1) and synthetic dyehouse effluents (>70 % removal) of the tested carbons. Finally, steam explosion preconditioning could open up new and potentially more sustainable process routes for producing functionalized active carbons.


Subject(s)
Azo Compounds , Charcoal , Plant Bark , Steam , Adsorption , Plant Bark/chemistry , Azo Compounds/chemistry , Charcoal/chemistry , Coloring Agents/chemistry , Carbon/chemistry , Spectroscopy, Fourier Transform Infrared , Water Purification/methods , Water Pollutants, Chemical , Wastewater/chemistry , Spectrum Analysis, Raman
2.
Water Sci Technol ; 88(11): 2917-2930, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38096078

ABSTRACT

Cadmium (Cd) is a highly toxic metal, occurring in municipal wastewater and stormwater as well as in wastewater from various industries. Char derived from the pyrolysis of municipal sewage sludge has the potential to be a low-cost sorption media for the removal of Cd. However, the balance between possible local char production and demand has not been assessed previously. In this study, the Cd sorption capacities of chars derived from primary (PSC) and secondary sludge (DSC), as well as the feasibility of char production for Cd sorbent purposes, and the pyrolysis energy balance were evaluated. Results showed that the sorption capacity of PSC (9.1 mg/g; 800 °C, 70 min) was superior to that of DSC (6.0 mg/g; 800 °C, 70 min), and increased with a higher pyrolysis temperature. Pyrolysis of primary sludge had a more favourable energy balance compared with the pyrolysis of digested sludge; however, when accounting for loss of biogas production the energy balance of primary sludge pyrolysis was negative. Assessment of the regional demand (Västerås, Sweden) indicated that PSC or DSC may cover the local Cd sorbent demand. However, it was estimated that large char volumes would be required, thus making the use of DSC/PSC less feasible.


Subject(s)
Cadmium , Sewage , Wastewater , Feasibility Studies , Hot Temperature
3.
ACS Omega ; 7(36): 32620-32630, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36119983

ABSTRACT

This study utilized pulp and paper mill sludge as a carbon source to produce activated biochar adsorbents. The response surface methodology (RSM) application for predicting and optimizing the activated biochar preparation conditions was investigated. Biochars were prepared based on a Box-Behnken design (BBD) approach with three independent factors (i.e., pyrolysis temperature, holding time, and KOH:biomass ratio), and the responses evaluated were specific surface area (SSA), micropore area (S micro), and mesopore area (S meso). According to the RSM and BBD analysis, a pyrolysis temperature of 800 °C for 3 h of holding and an impregnation ratio of 1:1 (biomass:KOH) are the optimum conditions for obtaining the highest SSA (885 m2 g-1). Maximized S micro was reached at 800 °C, 1 h and the ratio of 1:1, and for maximizing S meso (569.16 m2 g-1), 800 °C, 2 h and ratio 1:1.5 (445-473 m2 g-1) were employed. The biochars presented different micro- and mesoporosity characteristics depending on pyrolysis conditions. Elemental analysis showed that biochars exhibited high carbon and oxygen content. Raman analysis indicated that all biochars had disordered carbon structures with structural defects, which can boost their properties, e.g., by improving their adsorption performances. The hydrophobicity-hydrophilicity experiments showed very hydrophobic biochar surfaces. The biochars were used as adsorbents for diclofenac and amoxicillin. They presented very high adsorption performances, which could be explained by the pore filling, hydrophobic surface, and π-π electron-donor-acceptor interactions between aromatic rings of both adsorbent and adsorbate. The biochar with the highest surface area (and highest uptake performance) was subjected to regeneration tests, showing that it can be reused multiple times.

SELECTION OF CITATIONS
SEARCH DETAIL
...