Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Biomolecules ; 13(10)2023 10 06.
Article in English | MEDLINE | ID: mdl-37892169

ABSTRACT

The final three steps of heme biogenesis exhibit notable differences between di- and mono-derm bacteria. The former employs the protoporphyrin-dependent (PPD) pathway, while the latter utilizes the more recently uncovered coproporphyrin-dependent (CPD) pathway. In order to devise a rapid screen for potential inhibitors that differentiate the two pathways, the genes associated with the protoporphyrin pathway in an Escherichia coli YFP strain were replaced with those for the CPD pathway from Staphylococcus aureus (SA) through a sliding modular gene replacement recombineering strategy to generate the E. coli strain Sa-CPD-YFP. Potential inhibitors that differentially target the pathways were identified by screening compound libraries against the YFP-producing Sa-CPD-YFP strain in comparison to a CFP-producing E. coli strain. Using a mixed strain assay, inhibitors targeting either the CPD or PPD heme pathways were identified through a decrease in one fluorescent signal but not the other. An initial screen identified both azole and prodigiosin-derived compounds that were shown to specifically target the CPD pathway and which led to the accumulation of coproheme, indicating that the main target of inhibition would appear to be the coproheme decarboxylase (ChdC) enzyme. In silico modeling highlighted that these inhibitors are able to bind within the active site of ChdC.


Subject(s)
Escherichia coli , Protoporphyrins , Escherichia coli/genetics , Escherichia coli/metabolism , Heme/metabolism , Bacteria/metabolism
2.
J Biol Chem ; 299(7): 104877, 2023 07.
Article in English | MEDLINE | ID: mdl-37269954

ABSTRACT

Abcb10 is a mitochondrial membrane protein involved in hemoglobinization of red cells. Abcb10 topology and ATPase domain localization suggest it exports a substrate, likely biliverdin, out of mitochondria that is necessary for hemoglobinization. In this study, we generated Abcb10 deletion cell lines in both mouse murine erythroleukemia and human erythroid precursor human myelogenous leukemia (K562) cells to better understand the consequences of Abcb10 loss. Loss of Abcb10 resulted in an inability to hemoglobinize upon differentiation in both K562 and mouse murine erythroleukemia cells with reduced heme and intermediate porphyrins and decreased levels of aminolevulinic acid synthase 2 activity. Metabolomic and transcriptional analyses revealed that Abcb10 loss gave rise to decreased cellular arginine levels, increased transcripts for cationic and neutral amino acid transporters with reduced levels of the citrulline to arginine converting enzymes argininosuccinate synthetase and argininosuccinate lyase. The reduced arginine levels in Abcb10-null cells gave rise to decreased proliferative capacity. Arginine supplementation improved both Abcb10-null proliferation and hemoglobinization upon differentiation. Abcb10-null cells showed increased phosphorylation of eukaryotic translation initiation factor 2 subunit alpha, increased expression of nutrient sensing transcription factor ATF4 and downstream targets DNA damage inducible transcript 3 (Chop), ChaC glutathione specific gamma-glutamylcyclotransferase 1 (Chac1), and arginyl-tRNA synthetase 1 (Rars). These results suggest that when the Abcb10 substrate is trapped in the mitochondria, the nutrient sensing machinery is turned on remodeling transcription to block protein synthesis necessary for proliferation and hemoglobin biosynthesis in erythroid models.


Subject(s)
ATP-Binding Cassette Transporters , Animals , Humans , Mice , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Arginine , ATP-Binding Cassette Transporters/metabolism , Hemoglobins/metabolism , K562 Cells , Mitochondrial Proteins/metabolism
3.
Biomolecules ; 14(1)2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38254627

ABSTRACT

Acute intermittent porphyria (AIP) is characterized by acute neurovisceral attacks that are precipitated by the induction of hepatic 5-aminolevulinic acid synthase 1 (ALAS1). In erythropoietic protoporphyria (EPP), sun exposure leads to skin photosensitivity due to the overproduction of photoreactive porphyrins in bone marrow erythroid cells, where heme synthesis is primarily driven by the ALAS2 isozyme. Cimetidine has been suggested to be effective for the treatment of both AIP and EPP based on limited case reports. It has been proposed that cimetidine acts by inhibiting ALAS activity in liver and bone marrow for AIP and EPP, respectively, while it may also inhibit the hepatic activity of the heme catabolism enzyme, heme oxygenase (HO). Here, we show that cimetidine did not significantly modulate the activity or expression of endogenous ALAS or HO in wildtype mouse livers or bone marrow. Further, cimetidine did not effectively decrease hepatic ALAS activity or expression or plasma concentrations of the putative neurotoxic porphyrin precursors 5-aminolevulinic acid (ALA) and porphobilinogen (PBG), which were all markedly elevated during an induced acute attack in an AIP mouse model. These results show that cimetidine is not an efficacious treatment for acute attacks and suggest that its potential clinical benefit for EPP is not via ALAS inhibition.


Subject(s)
Porphyria, Acute Intermittent , Protoporphyria, Erythropoietic , Animals , Mice , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/therapeutic use , Cimetidine/pharmacology , Protoporphyria, Erythropoietic/drug therapy , Porphyria, Acute Intermittent/drug therapy , Nitric Oxide Synthase , Heme Oxygenase (Decyclizing) , Heme
4.
Blood Adv ; 5(23): 4831-4841, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34492704

ABSTRACT

As part of the inflammatory response by macrophages, Irg1 is induced, resulting in millimolar quantities of itaconate being produced. This immunometabolite remodels the macrophage metabolome and acts as an antimicrobial agent when excreted. Itaconate is not synthesized within the erythron but instead may be acquired from central macrophages within the erythroid island. Previously, we reported that itaconate inhibits hemoglobinization of developing erythroid cells. Herein we show that this action is accomplished by inhibition of tetrapyrrole synthesis. In differentiating erythroid precursors, cellular heme and protoporphyrin IX synthesis are reduced by itaconate at an early step in the pathway. In addition, itaconate causes global alterations in cellular metabolite pools, resulting in elevated levels of succinate, 2-hydroxyglutarate, pyruvate, glyoxylate, and intermediates of glycolytic shunts. Itaconate taken up by the developing erythron can be converted to itaconyl-coenzyme A (CoA) by the enzyme succinyl-CoA:glutarate-CoA transferase. Propionyl-CoA, propionyl-carnitine, methylmalonic acid, heptadecanoic acid, and nonanoic acid, as well as the aliphatic amino acids threonine, valine, methionine, and isoleucine, are increased, likely due to the impact of endogenous itaconyl-CoA synthesis. We further show that itaconyl-CoA is a competitive inhibitor of the erythroid-specific 5-aminolevulinate synthase (ALAS2), the first and rate-limiting step in heme synthesis. These findings strongly support our hypothesis that the inhibition of heme synthesis observed in chronic inflammation is mediated not only by iron limitation but also by limitation of tetrapyrrole synthesis at the point of ALAS2 catalysis by itaconate. Thus, we propose that macrophage-derived itaconate promotes anemia during an inflammatory response in the erythroid compartment.


Subject(s)
Heme , Succinates , Glycolysis , Macrophages , Succinates/pharmacology
5.
J Biol Chem ; 297(2): 100972, 2021 08.
Article in English | MEDLINE | ID: mdl-34280433

ABSTRACT

Heme plays a critical role in catalyzing life-essential redox reactions in all cells, and its synthesis must be tightly balanced with cellular requirements. Heme synthesis in eukaryotes is tightly regulated by the mitochondrial AAA+ unfoldase CLPX (caseinolytic mitochondrial matrix peptidase chaperone subunit X), which promotes heme synthesis by activation of δ-aminolevulinate synthase (ALAS/Hem1) in yeast and regulates turnover of ALAS1 in human cells. However, the specific mechanisms by which CLPX regulates heme synthesis are unclear. In this study, we interrogated the mechanisms by which CLPX regulates heme synthesis in erythroid cells. Quantitation of enzyme activity and protein degradation showed that ALAS2 stability and activity were both increased in the absence of CLPX, suggesting that CLPX primarily regulates ALAS2 by control of its turnover, rather than its activation. However, we also showed that CLPX is required for PPOX (protoporphyrinogen IX oxidase) activity and maintenance of FECH (ferrochelatase) levels, which are the terminal enzymes in heme synthesis, likely accounting for the heme deficiency and porphyrin accumulation observed in Clpx-/- cells. Lastly, CLPX is required for iron utilization for hemoglobin synthesis during erythroid differentiation. Collectively, our data show that the role of CLPX in yeast ALAS/Hem1 activation is not conserved in vertebrates as vertebrates rely on CLPX to regulate ALAS turnover as well as PPOX and FECH activity. Our studies reveal that CLPX mutations may cause anemia and porphyria via dysregulation of ALAS, FECH, and PPOX activities, as well as of iron metabolism.


Subject(s)
5-Aminolevulinate Synthetase/metabolism , Endopeptidase Clp/metabolism , Ferrochelatase/metabolism , Heme/biosynthesis , Iron/metabolism , Leukemia, Erythroblastic, Acute/pathology , Mitochondria/metabolism , Animals , Cell Line, Tumor , Endopeptidase Clp/genetics , Enzyme Activation , Gene Knockout Techniques/methods , Leukemia, Erythroblastic, Acute/enzymology , Leukemia, Erythroblastic, Acute/genetics , Mice , Models, Animal , Proteolysis , Zebrafish
6.
Infect Immun ; 88(8)2020 07 21.
Article in English | MEDLINE | ID: mdl-32457103

ABSTRACT

The human intestinal anaerobic commensal and opportunistic pathogen Bacteroides fragilis does not synthesize the tetrapyrrole protoporphyrin IX in order to form heme that is required for growth stimulation and survival in vivo Consequently, B. fragilis acquires essential heme from host tissues during extraintestinal infection. The absence of several genes necessary for de novo heme biosynthesis is a common characteristic of many anaerobic bacteria; however, the uroS gene, encoding a uroporphyrinogen III synthase for an early step of heme biosynthesis, is conserved among the heme-requiring Bacteroidales that inhabit the mammalian gastrointestinal tract. In this study, we show that the ability of B. fragilis to utilize heme or protoporphyrin IX for growth was greatly reduced in a ΔuroS mutant. This growth defect appears to be linked to the suppression of reverse chelatase and ferrochelatase activities in the absence of uroS In addition, this ΔuroS suppressive effect was enhanced by the deletion of the yifB gene, which encodes an Mg2+-chelatase protein belonging to the ATPases associated with various cellular activities (AAA+) superfamily of proteins. Furthermore, the ΔuroS mutant and the ΔuroS ΔyifB double mutant had a severe survival defect compared to the parent strain in competitive infection assays using animal models of intra-abdominal infection and intestinal colonization. This shows that the presence of the uroS and yifB genes in B. fragilis seems to be linked to pathophysiological and nutritional competitive fitness for survival in host tissues. Genetic complementation studies and enzyme kinetics assays indicate that B. fragilis UroS is functionally different from canonical bacterial UroS proteins. Taken together, these findings show that heme assimilation and metabolism in the anaerobe B. fragilis have diverged from those of aerobic and facultative anaerobic pathogenic bacteria.


Subject(s)
Bacterial Proteins/genetics , Bacteroides Infections/microbiology , Bacteroides fragilis/genetics , Bacteroides fragilis/pathogenicity , Ferrochelatase/genetics , Heme/metabolism , Uroporphyrinogen III Synthetase/genetics , Animals , Bacterial Proteins/immunology , Bacteroides Infections/immunology , Bacteroides Infections/metabolism , Bacteroides Infections/pathology , Bacteroides fragilis/immunology , Binding, Competitive , Biological Transport , Ferrochelatase/immunology , Gene Deletion , Gene Expression Regulation , Genetic Complementation Test , Heme/immunology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Intraabdominal Infections/immunology , Intraabdominal Infections/metabolism , Intraabdominal Infections/microbiology , Intraabdominal Infections/pathology , Male , Mice , Mice, Inbred C57BL , Protein Binding , Rats, Sprague-Dawley , Uroporphyrinogen III Synthetase/immunology , Virulence
7.
Microbiologyopen ; 8(4): e00669, 2019 04.
Article in English | MEDLINE | ID: mdl-29931811

ABSTRACT

The intestinal commensal and opportunistic anaerobic pathogen Bacteroides fragilis has an essential requirement for both heme and free iron to support growth in extraintestinal infections. In the absence of free iron, B. fragilis can utilize heme as the sole source of iron. However, the mechanisms to remove iron from heme are not completely understood. In this study, we show that the inner membrane ferrous iron transporter ∆feoAB mutant strain is no longer able to grow with heme as the sole source of iron. Genetic complementation with the feoAB gene operon completely restored growth. Our data indicate that iron is removed from heme in the periplasmic space, and the released iron is transported by the FeoAB system. Interestingly, when B. fragilis utilizes iron from heme, it releases heme-derived porphyrins by a dechelatase activity which is upregulated under low iron conditions. This is supported by the findings showing that formation of heme-derived porphyrins in the ∆feoAB mutant and the parent strain increased 30-fold and fivefold (respectively) under low iron conditions compared to iron replete conditions. Moreover, the btuS1 btuS2 double-mutant strain (lacking the predicted periplasmic, membrane anchored CobN-like proteins) also showed growth defect with heme as the sole source of iron, suggesting that BtuS1 and BtuS2 are involved in heme-iron assimilation. Though the dechelatase mechanism remains uncharacterized, assays performed in bacterial crude extracts show that BtuS1 and BtuS2 affect the regulation of the dechelatase-specific activities in an iron-dependent manner. These findings suggest that the mechanism to extract iron from heme in Bacteroides requires a group of proteins, which spans the periplasmic space to make iron available for cellular functions.


Subject(s)
Bacterial Proteins/metabolism , Bacteroides fragilis/metabolism , Cation Transport Proteins/metabolism , Heme/metabolism , Iron/metabolism , Bacterial Proteins/genetics , Bacteroides fragilis/genetics , Biological Transport , Cation Transport Proteins/genetics
8.
Proc Natl Acad Sci U S A ; 114(38): E8045-E8052, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28874591

ABSTRACT

Loss-of-function mutations in genes for heme biosynthetic enzymes can give rise to congenital porphyrias, eight forms of which have been described. The genetic penetrance of the porphyrias is clinically variable, underscoring the role of additional causative, contributing, and modifier genes. We previously discovered that the mitochondrial AAA+ unfoldase ClpX promotes heme biosynthesis by activation of δ-aminolevulinate synthase (ALAS), which catalyzes the first step of heme synthesis. CLPX has also been reported to mediate heme-induced turnover of ALAS. Here we report a dominant mutation in the ATPase active site of human CLPX, p.Gly298Asp, that results in pathological accumulation of the heme biosynthesis intermediate protoporphyrin IX (PPIX). Amassing of PPIX in erythroid cells promotes erythropoietic protoporphyria (EPP) in the affected family. The mutation in CLPX inactivates its ATPase activity, resulting in coassembly of mutant and WT protomers to form an enzyme with reduced activity. The presence of low-activity CLPX increases the posttranslational stability of ALAS, causing increased ALAS protein and ALA levels, leading to abnormal accumulation of PPIX. Our results thus identify an additional molecular mechanism underlying the development of EPP and further our understanding of the multiple mechanisms by which CLPX controls heme metabolism.


Subject(s)
5-Aminolevulinate Synthetase/metabolism , Endopeptidase Clp , Mutation, Missense , Porphyria, Erythropoietic , Protoporphyrins/biosynthesis , 5-Aminolevulinate Synthetase/genetics , Adolescent , Amino Acid Substitution , Endopeptidase Clp/genetics , Endopeptidase Clp/metabolism , Enzyme Stability/genetics , Female , Humans , Male , Porphyria, Erythropoietic/genetics , Porphyria, Erythropoietic/metabolism , Porphyria, Erythropoietic/pathology , Protoporphyrins/genetics
9.
J Biol Chem ; 292(39): 16284-16299, 2017 09 29.
Article in English | MEDLINE | ID: mdl-28808058

ABSTRACT

ATP-binding cassette subfamily B member 10 (Abcb10) is a mitochondrial ATP-binding cassette (ABC) transporter that complexes with mitoferrin1 and ferrochelatase to enhance heme biosynthesis in developing red blood cells. Reductions in Abcb10 levels have been shown to reduce mitoferrin1 protein levels and iron import into mitochondria, resulting in reduced heme biosynthesis. As an ABC transporter, Abcb10 binds and hydrolyzes ATP, but its transported substrate is unknown. Here, we determined that decreases in Abcb10 did not result in protoporphyrin IX accumulation in morphant-treated zebrafish embryos or in differentiated Abcb10-specific shRNA murine Friend erythroleukemia (MEL) cells in which Abcb10 was specifically silenced with shRNA. We also found that the ATPase activity of Abcb10 is necessary for hemoglobinization in MEL cells, suggesting that the substrate transported by Abcb10 is important in mediating increased heme biosynthesis during erythroid development. Inhibition of 5-aminolevulinic acid dehydratase (EC 4.2.1.24) with succinylacetone resulted in both 5-aminolevulinic acid (ALA) accumulation in control and Abcb10-specific shRNA MEL cells, demonstrating that reductions in Abcb10 do not affect ALA export from mitochondria and indicating that Abcb10 does not transport ALA. Abcb10 silencing resulted in an alteration in the heme biosynthesis transcriptional profile due to repression by the transcriptional regulator Bach1, which could be partially rescued by overexpression of Alas2 or Gata1, providing a mechanistic explanation for why Abcb10 shRNA MEL cells exhibit reduced hemoglobinization. In conclusion, our findings rule out that Abcb10 transports ALA and indicate that Abcb10's ATP-hydrolysis activity is critical for hemoglobinization and that the substrate transported by Abcb10 provides a signal that optimizes hemoglobinization.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Gene Expression Regulation, Enzymologic , Heme/biosynthesis , Zebrafish Proteins/metabolism , ATP-Binding Cassette Transporters/antagonists & inhibitors , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , Amino Acid Motifs , Amino Acid Substitution , Animals , Basic-Leucine Zipper Transcription Factors/antagonists & inhibitors , Basic-Leucine Zipper Transcription Factors/genetics , Embryo, Nonmammalian/enzymology , Embryo, Nonmammalian/metabolism , Fanconi Anemia Complementation Group Proteins , Gene Expression Regulation, Developmental , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Mice , Microinjections , Morpholinos/metabolism , Mutation , RNA Interference , RNA, Small Interfering , Zebrafish , Zebrafish Proteins/antagonists & inhibitors , Zebrafish Proteins/genetics
10.
Elife ; 62017 05 29.
Article in English | MEDLINE | ID: mdl-28553927

ABSTRACT

Heme is required for survival of all cells, and in most eukaryotes, is produced through a series of eight enzymatic reactions. Although heme production is critical for many cellular processes, how it is coupled to cellular differentiation is unknown. Here, using zebrafish, murine, and human models, we show that erythropoietin (EPO) signaling, together with the GATA1 transcriptional target, AKAP10, regulates heme biosynthesis during erythropoiesis at the outer mitochondrial membrane. This integrated pathway culminates with the direct phosphorylation of the crucial heme biosynthetic enzyme, ferrochelatase (FECH) by protein kinase A (PKA). Biochemical, pharmacological, and genetic inhibition of this signaling pathway result in a block in hemoglobin production and concomitant intracellular accumulation of protoporphyrin intermediates. Broadly, our results implicate aberrant PKA signaling in the pathogenesis of hematologic diseases. We propose a unifying model in which the erythroid transcriptional program works in concert with post-translational mechanisms to regulate heme metabolism during normal development.


Subject(s)
A Kinase Anchor Proteins/metabolism , Erythropoietin/metabolism , GATA1 Transcription Factor/metabolism , Heme/biosynthesis , Signal Transduction , Animals , Cyclic AMP-Dependent Protein Kinases/metabolism , Humans , Mice , Mitochondrial Membranes/metabolism , Zebrafish
11.
Clin Biochem ; 48(12): 788-95, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25959086

ABSTRACT

OBJECTIVE: In mammalian cells the rate-limiting step in heme biosynthesis is the formation of δ-aminolevulinic acid (ALA). The reaction intermediates, porphyrins and iron and the final product, heme can be highly cytotoxic if allowed to accumulate. The importance of maintaining the levels of metabolic intermediates and heme within a narrow range is apparent based on the complex homeostatic system(s) that have developed. Ultimately, determining the enzymatic activity of ALA synthase (ALAS) present in the mitochondria is highly beneficial to confirm the effects of the transcriptional, translational and post-translational events. The aim of this study was to develop a highly sensitive assay for ALAS that could be used on whole tissue or cellular homogenates. DESIGN AND METHODS: A systematic approach was used to optimize steps in formation of ALA by ALAS. Reducing the signal to noise ratio for the assay was achieved by derivatizing the ALA formed into a fluorescent product that could be efficiently separated by ultra performance liquid chromatography (UPLC) from other derivatized primary amines. The stability of ALAS activity in whole tissue homogenate and cellular homogenate was determined after extended storage at -80 °C. CONCLUSIONS: A method for assaying ALAS has been developed that can be used with tissue homogenates or cellular lysates. There is no need to purify mitochondria and radiolabeled substrates are not needed for this assay. General laboratory reagents can be used to prepare the samples. Standard UPLC chromatography will resolve the derivatized ALA peak. Samples of tissue homogenate can be stored for approximately one year without significant loss of enzymatic activity.


Subject(s)
5-Aminolevulinate Synthetase/analysis , 5-Aminolevulinate Synthetase/metabolism , Animals , Cell Line, Tumor , Chromatography, Liquid/methods , Fluorescent Dyes/chemistry , Humans , Leukemia, Erythroblastic, Acute/enzymology , Liver/enzymology , Mice , Mice, Inbred C57BL
12.
Blood Cells Mol Dis ; 47(4): 249-54, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-21880518

ABSTRACT

Cytochrome P4501A2 (Cyp1a2) is important in the development of uroporphyria in mice, a model of porphyria cutanea tarda in humans. Heretofore, mice homozygous for the Cyp1a2-/- mutation do not develop uroporphyria with treatment regimens that result in uroporphyria in wild-type mice. Here we report uroporphyria development in Cyp1a2-/- mice additionally null for both alleles of the hemochromatosis (Hfe) gene and heterozygous for deletion of the uroporphyrinogen decarboxylase (Urod) gene (genotype: Cyp1a2-/-;Hfe-/-;Urod+/-), demonstrating that upon adding porphyria-predisposing genetic manipulations, Cyp1a2 is not essential. Cyp1a2-/-;Hfe-/-;Urod+/- mice were treated with various combinations of an iron-enriched diet, parenteral iron-dextran, drinking water containing δ-aminolevulinic acid and intraperitoneal Aroclor 1254 (a polychlorinated biphenyl mixture) and analyzed for uroporphyrin accumulation. Animals fed an iron-enriched diet alone did not develop uroporphyria but uroporphyria developed with all treatments that included iron supplementation and δ-aminolevulinic acid, even with a regimen without Aroclor 1254. Hepatic porphyrin levels correlated with low UROD activity and high levels of an inhibitor of UROD but marked variability in the magnitude of the porphyric response was present in all treatment groups. Gene expression profiling revealed no major differences between genetically identical triple cross mice exhibiting high and low magnitude porphyric responses from iron-enriched diet and iron-dextran supplementation, and δ-aminolevulinic acid. Even though the variation in porphyric response did not parallel the hepatic iron concentration, the results are compatible with the presence of a Cyp1a2-independent, iron-dependent pathway for the generation of uroporphomethene, the UROD inhibitor required for the expression of uroporphyria in mice and PCT in humans.


Subject(s)
Cytochrome P-450 CYP1A2/genetics , Porphyria Cutanea Tarda/genetics , Animals , Cytochrome P-450 CYP1A2/metabolism , Disease Models, Animal , Genotype , Iron/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Porphyria Cutanea Tarda/diet therapy , Porphyria Cutanea Tarda/metabolism , Porphyrins/metabolism , Uroporphyrinogen Decarboxylase/genetics , Uroporphyrinogen Decarboxylase/metabolism
13.
Anal Biochem ; 384(1): 74-8, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-18845122

ABSTRACT

Porphyrinogens serve as substrates for three heme biosynthetic enzymes. Porphyrinogens are highly unstable and must be generated as an integral part of enzyme assays. Methods commonly employed to generate porphyrinogens include chemical reduction using sodium amalgam or sodium borohydride and enzymatic generation from porphobilinogen. Chemical reduction yields porphyrinogens in highly alkaline solutions with high ionic strength, whereas enzymatic generation requires purified enzymes, deproteination, and complete buffer replacement. This article describes an improved method for reducing porphyrins to porphyrinogens using palladium on carbon as a catalyst under hydrogen at ambient temperature and pressure in the dark. The palladium catalyst is removed by filtration, the filtrate is blown dry with an inert gas, and the dried porphyrinogen can be dissolved in a buffer compatible with biological studies.


Subject(s)
Carbon/chemistry , Palladium/chemistry , Porphyrinogens/chemistry , Porphyrins/chemistry , Catalysis , Oxidation-Reduction
14.
J Biol Chem ; 283(43): 28926-33, 2008 Oct 24.
Article in English | MEDLINE | ID: mdl-18480062

ABSTRACT

One of the most important biological reactions of nitric oxide (nitrogen monoxide, *NO) is its reaction with transition metals, of which iron is the major target. This is confirmed by the ubiquitous formation of EPR-detectable g=2.04 signals in cells, tissues, and animals upon exposure to both exogenous and endogenous *NO. The source of the iron for these dinitrosyliron complexes (DNIC), and its relationship to cellular iron homeostasis, is not clear. Evidence has shown that the chelatable iron pool (CIP) may be at least partially responsible for this iron, but quantitation and kinetic characterization have not been reported. In the murine cell line RAW 264.7, *NO reacts with the CIP similarly to the strong chelator salicylaldehyde isonicotinoyl hydrazone (SIH) in rapidly releasing iron from the iron-calcein complex. SIH pretreatment prevents DNIC formation from *NO, and SIH added during the *NO treatment "freezes" DNIC levels, showing that the complexes are formed from the CIP, and they are stable (resistant to SIH). DNIC formation requires free *NO, because addition of oxyhemoglobin prevents formation from either *NO donor or S-nitrosocysteine, the latter treatment resulting in 100-fold higher intracellular nitrosothiol levels. EPR measurement of the CIP using desferroxamine shows quantitative conversion of CIP into DNIC by *NO. In conclusion, the CIP is rapidly and quantitatively converted to paramagnetic large molecular mass DNIC from exposure to free *NO but not from cellular nitrosothiol. These results have important implications for the antioxidative actions of *NO and its effects on cellular iron homeostasis.


Subject(s)
Iron/chemistry , Nitric Oxide/metabolism , Animals , Antioxidants/chemistry , Cell Line , Chelating Agents/chemistry , Chelating Agents/pharmacology , Electron Spin Resonance Spectroscopy , Hemoglobins/chemistry , Homeostasis , Macromolecular Substances , Mice , Microscopy, Fluorescence/methods , Models, Chemical , Nitrogen/chemistry , Sulfhydryl Compounds/chemistry
15.
Proc Natl Acad Sci U S A ; 104(12): 5079-84, 2007 Mar 20.
Article in English | MEDLINE | ID: mdl-17360334

ABSTRACT

Porphyria cutanea tarda (PCT), the most common form of porphyria in humans, is due to reduced activity of uroporphyrinogen decarboxylase (URO-D) in the liver. Previous studies have demonstrated that protein levels of URO-D do not change when catalytic activity is reduced, suggesting that an inhibitor of URO-D is generated in hepatocytes. Here, we describe the identification and characterization of an inhibitor of URO-D in liver cytosolic extracts from two murine models of PCT: wild-type mice treated with iron, delta-aminolevulinic acid, and polychlorinated biphenyls; and mice with one null allele of Uro-d and two null alleles of the hemochromatosis gene (Uro-d(+/-), Hfe(-/-)) that develop PCT with no treatments. In both models, we identified an inhibitor of recombinant human URO-D (rhURO-D). The inhibitor was characterized by solid-phase extraction, chromatography, UV-visible spectroscopy, and mass spectroscopy and proved to be uroporphomethene, a compound in which one bridge carbon in the uroporphyrinogen macrocycle is oxidized. We synthesized uroporphomethene by photooxidation of enzymatically generated uroporphyrinogen I or III. Both uroporphomethenes inhibited rhURO-D, but the III isomer porphomethene was a more potent inhibitor. Finally, we detected an inhibitor of rhURO-D in cytosolic extracts of liver biopsy samples of patients with PCT. These studies define the mechanism underlying clinical expression of the PCT phenotype, namely oxidation of uroporphyrinogen to uroporphomethene, a competitive inhibitor of URO-D. The oxidation reaction is iron-dependent.


Subject(s)
Porphyria Cutanea Tarda/etiology , Porphyrins/pharmacology , Uroporphyrinogen Decarboxylase/antagonists & inhibitors , Animals , Chromatography, High Pressure Liquid , Cytosol/drug effects , Cytosol/enzymology , Humans , Liver/drug effects , Liver/enzymology , Liver Extracts , Mass Spectrometry , Mice , Mice, Inbred C57BL , Porphyria Cutanea Tarda/chemically induced , Porphyrins/analysis , Porphyrins/chemistry , Recombinant Proteins/metabolism , Uroporphyrinogens/chemistry
16.
Leuk Res ; 31(6): 773-7, 2007 Jun.
Article in English | MEDLINE | ID: mdl-16970987

ABSTRACT

The DNA methylation index (MI) is calculated as a percentage of methylated cytosines to cytosines. We established the DNA MI in 100 normal individuals ranging in age between 1 month and 94 years and found that the age-specific DNA MI can be calculated (4.00-0.0034 x age). We determined the DNA MI in 23 patients with CLL ranging from 47 to 90 years and compared the results with age-matched controls. Using Cox proportional hazard models for MI, adjusting for age and white blood cell count, only the DNA MI correlated with early clinical indications for systemic therapy (p=0.0038, HR=7.00, 95% CI: 1.90-26.20).


Subject(s)
DNA Methylation , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Child , Child, Preschool , Disease Progression , Female , Humans , Infant , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Leukocyte Count , Male , Middle Aged , Proportional Hazards Models
SELECTION OF CITATIONS
SEARCH DETAIL
...