Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Lett ; 529(1): 80-5, 2012 Oct 31.
Article in English | MEDLINE | ID: mdl-22985510

ABSTRACT

Neuromuscular electrical stimulation (NMES) increases the excitability of corticospinal (CS) pathways by altering circuits in motor cortex (M1). How NMES affects circuits interposed between the ascending afferent volley and descending CS pathways is not known. Presently, we hypothesized that short-latency afferent inhibition (SAI) would be reduced and afferent facilitation (AF) enhanced when NMES increased CS excitability. NMES was delivered for 40 min over the ulnar nerve. To assess CS excitability, motor evoked potentials (MEPs) were evoked using transcranial magnetic stimulation (TMS) delivered at 120% resting threshold for first dorsal interosseus muscle. These MEPs increased by ∼1.7-fold following NMES, demonstrating enhanced CS excitability. SAI and AF were tested by delivering a "conditioning" electrical stimulus to the ulnar nerve 18-25 ms and 28-35 ms before a "test" TMS pulse, respectively. Conditioned MEPs were compared to unconditioned MEPs evoked in the same trials. TMS was adjusted so unconditioned MEPs were not different before and after NMES. At the SAI interval, conditioned MEPs were 25% smaller than unconditioned MEPs before NMES but conditioned and unconditioned MEPs were not different following NMES. At the AF interval, conditioned MEPs were not different from unconditioned MEPs before NMES, but were facilitated by 33% following NMES. Thus, when NMES increases CS excitability there are concurrent changes in the effect of afferent input on M1 excitability, resulting in a net increase in the excitatory effect of the ascending afferent volley on CS circuits. Maximising this excitatory effect on M1 circuits may help strengthen CS pathways and improve functional outcomes of NMES-based rehabilitation programs.


Subject(s)
Afferent Pathways/physiology , Electric Stimulation , Neural Inhibition/physiology , Neuromuscular Junction/physiology , Pyramidal Tracts/physiology , Reaction Time/physiology , Synaptic Transmission/physiology , Adolescent , Adult , Female , Humans , Male , Middle Aged , Young Adult
2.
J Appl Physiol (1985) ; 113(1): 78-89, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22556395

ABSTRACT

Neuromuscular electrical stimulation (NMES) can be delivered over a nerve trunk or muscle belly and both can generate contractions through peripheral and central pathways. Generating contractions through peripheral pathways is associated with a nonphysiological motor unit recruitment order, which may limit the efficacy of NMES rehabilitation. Presently, we compared recruitment through peripheral and central pathways for contractions of the knee extensors evoked by NMES applied over the femoral nerve vs. the quadriceps muscle. NMES was delivered to evoke 10 and 20% of maximum voluntary isometric contraction torque 2-3 s into the NMES (time(1)) in two patterns: 1) constant frequency (15 Hz for 8 s); and 2) step frequency (15-100-15 Hz and 25-100-25 Hz for 3-2-3 s, respectively). Torque and electromyographic activity recorded from vastus lateralis and medialis were quantified at the beginning (time(1)) and end (time(2); 6-7 s into the NMES) of each pattern. M-waves (peripheral pathway), H-reflexes, and asynchronous activity (central pathways) during NMES were quantified. Torque did not differ regardless of NMES location, pattern, or time. For both muscles, M-waves were ∼7-10 times smaller and H-reflexes ∼8-9 times larger during NMES over the nerve compared with over the muscle. However, unlike muscles studied previously, neither torque nor activity through central pathways were augmented following 100 Hz NMES, nor was any asynchronous activity evoked during NMES at either location. The coefficient of variation was also quantified at time(2) to determine the consistency of each dependent measure between three consecutive contractions. Torque, M-waves, and H-reflexes were most variable during NMES over the nerve. In summary, NMES over the nerve produced contractions with the greatest recruitment through central pathways; however, considering some of the limitations of NMES over the femoral nerve, it may be considered a good complement to, as opposed to a replacement for, NMES over the quadriceps muscle for maintaining muscle quality and reducing contraction fatigue during NMES rehabilitation.


Subject(s)
Femoral Nerve/physiology , Quadriceps Muscle/innervation , Recruitment, Neurophysiological/physiology , Adult , Electric Stimulation , Electromyography , Female , H-Reflex/physiology , Humans , Isometric Contraction/physiology , Knee/innervation , Knee/physiology , Male , Middle Aged , Quadriceps Muscle/physiology , Torque , Young Adult
3.
Eur J Appl Physiol ; 111(10): 2409-26, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21805156

ABSTRACT

Neuromuscular electrical stimulation (NMES) generates contractions by depolarising axons beneath the stimulating electrodes. The depolarisation of motor axons produces contractions by signals travelling from the stimulation location to the muscle (peripheral pathway), with no involvement of the central nervous system (CNS). The concomitant depolarisation of sensory axons sends a large volley into the CNS and this can contribute to contractions by signals travelling through the spinal cord (central pathway) which may have advantages when NMES is used to restore movement or reduce muscle atrophy. In addition, the electrically evoked sensory volley increases activity in CNS circuits that control movement and this can also enhance neuromuscular function after CNS damage. The first part of this review provides an overview of how peripheral and central pathways contribute to contractions evoked by NMES and describes how differences in NMES parameters affect the balance between transmission along these two pathways. The second part of this review describes how NMES location (i.e. over the nerve trunk or muscle belly) affects transmission along peripheral and central pathways and describes some implications for motor unit recruitment during NMES. The third part of this review summarises some of the effects that the electrically evoked sensory volley has on CNS circuits, and highlights the need to identify optimal stimulation parameters for eliciting plasticity in the CNS. A goal of this work is to identify the best way to utilize the electrically evoked sensory volley generated during NMES to exploit mechanisms inherent to the neuromuscular system and enhance neuromuscular function for rehabilitation.


Subject(s)
Evoked Potentials, Motor/physiology , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Neuromuscular Junction/physiology , Electric Stimulation/methods , Electromyography , Humans , Models, Biological , Motor Neurons/physiology , Nerve Net/physiology , Peripheral Nerves/physiology
4.
J Appl Physiol (1985) ; 110(3): 627-37, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21183628

ABSTRACT

Neuromuscular electrical stimulation (NMES) can be delivered over a nerve trunk or muscle belly and can generate contractions by activating motor (peripheral pathway) and sensory (central pathway) axons. In the present experiments, we compared the peripheral and central contributions to plantar flexion contractions evoked by stimulation over the tibial nerve vs. the triceps surae muscles. Generating contractions through central pathways follows Henneman's size principle, whereby low-threshold motor units are activated first, and this may have advantages for rehabilitation. Statistical analyses were performed on data from trials in which NMES was delivered to evoke 10-30% maximum voluntary torque 2-3 s into the stimulation (Time(1)). Two patterns of stimulation were delivered: 1) 20 Hz for 8 s; and 2) 20-100-20 Hz for 3-2-3 s. Torque and soleus electromyography were quantified at the beginning (Time(1)) and end (Time(2); 6-7 s into the stimulation) of each stimulation train. H reflexes (central pathway) and M waves (peripheral pathway) were quantified. Motor unit activity that was not time-locked to each stimulation pulse as an M wave or H reflex ("asynchronous" activity) was also quantified as a second measure of central recruitment. Torque was not different for stimulation over the nerve or the muscle. In contrast, M waves were approximately five to six times smaller, and H reflexes were approximately two to three times larger during NMES over the nerve vs. the muscle. Asynchronous activity increased by 50% over time, regardless of the stimulation location or pattern, and was largest during NMES over the muscle belly. Compared with NMES over the triceps surae muscles, NMES over the tibial nerve produced contractions with a relatively greater central contribution, and this may help reduce muscle atrophy and fatigue when NMES is used for rehabilitation.


Subject(s)
Electric Stimulation/methods , Muscle Contraction/physiology , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Peripheral Nerves/physiology , Recruitment, Neurophysiological/physiology , Adult , Female , Humans , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...