Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oncoimmunology ; 13(1): 2338965, 2024.
Article in English | MEDLINE | ID: mdl-38590799

ABSTRACT

Immunotherapy has revolutionized the treatment of cancers. Reinvigorating lymphocytes with checkpoint blockade has become a cornerstone of immunotherapy for multiple tumor types, but the treatment of glioblastoma has not yet shown clinical efficacy. A major hurdle to treat GBM with checkpoint blockade is the high degree of myeloid-mediated immunosuppression in brain tumors that limits CD8 T-cell activity. A potential strategy to improve anti-tumor efficacy against glioma is to use myeloid-modulating agents to target immunosuppressive cells, such as myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. We found that the co-inhibition of the chemokine receptors CCR2 and CCR5 in murine model of glioma improves the survival and synergizes robustly with anti-PD-1 therapy. Moreover, the treatment specifically reduced the infiltration of monocytic-MDSCs (M-MDSCs) into brain tumors and increased lymphocyte abundance and cytokine secretion by tumor-infiltrating CD8 T cells. The depletion of T-cell subsets and myeloid cells abrogated the effects of CCR2 and CCR5 blockade, indicating that while broad depletion of myeloid cells does not improve survival, specific reduction in the infiltration of immunosuppressive myeloid cells, such as M-MDSCs, can boost the anti-tumor immune response of lymphocytes. Our study highlights the potential of CCR2/CCR5 co-inhibition in reducing myeloid-mediated immunosuppression in GBM patients.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Myeloid-Derived Suppressor Cells , Humans , Mice , Animals , Glioma/drug therapy , Glioblastoma/drug therapy , Myeloid Cells/pathology , Brain Neoplasms/drug therapy , Tumor Microenvironment , Receptors, CCR2 , Receptors, CCR5/therapeutic use
2.
Neurooncol Adv ; 5(1): vdac188, 2023.
Article in English | MEDLINE | ID: mdl-36820236

ABSTRACT

Background: Precision health approaches to managing symptom burden in primary brain tumor (PBT) patients are imperative to improving patient outcomes and quality of life, but require tackling the complexity and heterogeneity of the symptom experience. Network Analysis (NA) can identify complex symptom co-severity patterns, and unsupervised clustering can unbiasedly stratify patients into clinically relevant subgroups based on symptom patterns. We combined these approaches in a novel study seeking to understand PBT patients' clinical and demographic determinants of symptom burden. Methods: MDASI-BT symptom severity data from a two-institutional cohort of 1128 PBT patients were analyzed. Gaussian Graphical Model networks were constructed for the all-patient cohort and subgroups identified by unsupervised clustering based on co-severity patterns. Network characteristics were analyzed and compared using permutation-based statistical tests. Results: NA of the all-patient cohort revealed 4 core dimensions that drive the overall symptom burden of PBT patients: Cognitive, physical, focal neurologic, and affective. Fatigue/drowsiness was identified as pivotal to the symptom experience based on the network characteristics. Unsupervised clustering discovered 4 patient subgroups: PC1 (n = 683), PC2 (n = 244), PC3 (n = 92), and PC4 (n = 109). Moderately accurate networks could be constructed for PC1 and PC2. The PC1 patients had the highest interference scores among the subgroups and their network resembled the all-patient network. The PC2 patients were older and their symptom burden was driven by cognitive symptoms. Conclusions: In the future, the proposed framework might be able to prioritize symptoms for targeting individual patients, informing more personalized symptom management.

3.
Biochem Biophys Rep ; 27: 101081, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34307909

ABSTRACT

SARS-CoV-2 viral contagion has given rise to a worldwide pandemic. Although most children experience minor symptoms from SARS-CoV-2 infection, some have severe complications including Multisystem Inflammatory Syndrome in Children. Neuroblastoma patients may be at higher risk of severe infection as treatment requires immunocompromising chemotherapy and SARS-CoV-2 has demonstrated tropism for nervous cells. To date, there is no sufficient epidemiological data on neuroblastoma patients with SARS-CoV-2. Therefore, we evaluated datasets of non-SARS-CoV-2 infected neuroblastoma patients to assess for key genes involved with SARS-CoV-2 infection as possible neuroblastoma prognostic and infection biomarkers. We hypothesized that ACE2, CD147, PPIA and PPIB, which are associated with viral-cell entry, are potential biomarkers for poor prognosis neuroblastoma and SARS-CoV-2 infection. We have analysed three publicly available neuroblastoma gene expression datasets to understand the specific molecular susceptibilities that high-risk neuroblastoma patients have to the virus. Gene Expression Omnibus (GEO) GSE49711 and GEO GSE62564 are the microarray and RNA-Seq data, respectively, from 498 neuroblastoma samples published as part of the Sequencing Quality Control initiative. TARGET, contains microarray data from 249 samples and is part of the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative. ACE2, CD147, PPIA and PPIB were identified through their involvement in both SARS-CoV-2 infection and cancer pathogenesis. In-depth statistical analysis using Kaplan-Meier, differential gene expression, and Cox multivariate regression analysis, demonstrated that overexpression of ACE2, CD147, PPIA and PPIB is significantly associated with poor-prognosis neuroblastoma samples. These results were seen in the presence of amplified MYCN, unfavourable tumour histology and in patients older than 18 months of age. Previously, we have shown that high levels of the nerve growth factor receptor NTRK1 together with low levels of the phosphatase PTPN6 and TP53 are associated with increased relapse-free survival of neuroblastoma patients. Interestingly, low levels of expression of ACE2, CD147, PPIA and PPIB are associated with this NTRK1-PTPN6-TP53 module, suggesting that low expression levels of these genes are associated with good prognosis. These findings have implications for clinical care and therapeutic treatment. The upregulation of ACE2, CD147, PPIA and PPIB in poor-prognosis neuroblastoma samples suggests that these patients may be at higher risk of severe SARS-CoV-2 infection. Importantly, our findings reveal ACE2, CD147, PPIA and PPIB as potential biomarkers and therapeutic targets for neuroblastoma.

SELECTION OF CITATIONS
SEARCH DETAIL
...