Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 281: 116617, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38905940

ABSTRACT

Hydrogen sulphide (H2S) is considered an immunotoxicant, and its presence in the water can influence the mucosal barrier functions of fish. However, there is a significant knowledge gap on how fish mucosa responds to low environmental H2S levels. The present study investigated the consequences of prolonged exposure to sub-lethal levels of H2S on the mucosal defences of Atlantic salmon (Salmo salar). Fish were continuously exposed to two levels of H2S (low: 0.05 µM; and high: 0.12 µM) for 12 days. Unexposed fish served as control. Molecular and histological profiling focused on the changes in the skin, gills and olfactory rosette. In addition, metabolomics and proteomics were performed on the skin and gill mucus. The gene expression profile indicated that the gills and olfactory rosette were more sensitive to H2S than the skin. The olfactory rosette showed a dose-dependent response, but not the gills. Genes related to stress responses were triggered at mucosal sites by H2S. Moreover, H2S elicited strong inflammatory responses, particularly in the gills. All mucosal organs demonstrated the key molecular repertoire for sulphide detoxification, but their temporal and spatial expression was not substantially affected by sub-lethal H2S levels. Mucosal barrier integrity was not considerably affected by H2S. Mucus metabolomes of the skin and gills were unaffected, but a matrix-dependent response was identified. Comparing the high-concentration group's skin and gills mucus metabolomes identified altered amino acid biosynthesis and metabolism pathways. The skin and gill mucus exhibited distinct proteomic profiles. Enrichment analysis revealed that proteins related to immunity and metabolism were affected in both mucus matrices. The present study expands our knowledge of the defence mechanisms against H2S at mucosal sites in Atlantic salmon. The findings offer insights into the health and welfare consequences of sub-lethal H2S, which can be incorporated into the risk assessment protocols in salmon land-based farms.

2.
Ecotoxicol Environ Saf ; 270: 115897, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38176182

ABSTRACT

Atlantic salmon (Salmo salar) might encounter toxic hydrogen sulphide (H2S) gas during aquaculture production. Exposure to this gas can be acute or chronic, with heightened levels often linked to significant mortality rates. Despite its recognised toxicity, our understanding of the physiological implications of H2S on salmon remains limited. This report details the mucosal and systemic physiological consequences in post-smolt salmon reared in brackish water at 12 ppt after prolonged exposure to elevated H2S levels over 4 weeks. The fish were subjected to two concentrations of H2S: 1 µg/L (low group) and 5 µg/L (high group). An unexposed group at 0 µg/L served as the control. Both groups exposed to H2S exhibited incremental mortality, with cumulative mortality rates of 4.7 % and 16 % for the low and high groups, respectively. Production performance, including weight and condition factors, were reduced in the H2S-exposed groups, particularly in the high group. Mucosal response of the olfactory organ revealed higher tissue damage scores in the H2S-exposed groups, albeit only at week 4. The high group displayed pronounced features such as increased mucus cell density and oedema-like vacuoles. Transcriptome analysis of the olfactory organ unveiled that the effects of H2S were more prominent at week 4, with the high group experiencing a greater magnitude of change than the low group. Genes associated with the extracellular matrix were predominantly downregulated, while the upregulated genes primarily pertained to immune response. H2S-induced alterations in the metabolome were more substantial in plasma than skin mucus. Furthermore, the number of differentially affected circulating metabolites was higher in the low group compared to the high group. Five core pathways were significantly impacted by H2S regardless of concentration, including the phenylalanine, tyrosine, and tryptophan biosynthesis. The plasma levels of phenylalanine and tyrosine were reduced following exposure to H2S. While there was a discernible distinction in the skin mucus metabolomes among the three treatment groups, only one metabolite - 4-hydroxyproline - was significantly impacted by H2S. Furthermore, this metabolite was significantly reduced in the plasma and skin mucus of H2S-exposed fish. This study underscores that prolonged exposure to H2S, even at concentrations previously deemed sub-lethal, has discernible physiological implications that manifest across various organisational levels. Given these findings, prolonged exposure to H2S poses a welfare risk, and thus, its presence must be maintained at low levels (<1 µg/L) in salmon land-based rearing systems.


Subject(s)
Hydrogen Sulfide , Salmo salar , Animals , Aquaculture , Phenylalanine , Tyrosine
3.
Water Res ; 222: 118892, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35917668

ABSTRACT

The occurrence of hydrogen sulfide (H2S) represents a challenge for recirculating aquaculture systems (RAS) under saline conditions. Even low concentrations of the toxic gas can result in sudden mass mortalities of fish, leading to large economic losses. There is an urgent need for efficient strategies to remove H2S, which can be applied effectively with a short response time, to prevent the risk of H2S-induced casualties. This study examines the kinetics of the two common oxidants applied to rearing water in a RAS facility; oxygen (O2) and hydrogen peroxide (H2O2) and evaluates their efficiency and applicability for the removal of H2S in an industrial RAS. Furthermore, we tested whether nitrate (NO3-) can be an oxygen donor in the chemical oxidation of H2S. The baseline oxidation rates of H2S by O2 were determined in air-equilibrated seawater (SW) and RAS water (RASW). The feasibility of using H2O2 as a practical treatment was evaluated by testing increasing H2O2 to H2S ratios in SW. In addition, RASW dilutions that yielded different concentrations of NO3- and total chemical oxygen demand (TCOD) were tested to identify their effects on H2S removal. The half-lives (t½) of H2S, derived from O2 oxidation rates, were considerably shorter in SW (118.5 ± 28.6 min) compared to RASW (168.0 ± 18.7 min). The addition of a 1:1 mole ratio of H2O2 to H2S, significantly increased the removal rate and decreased the half-life (t½) of H2S in SW to 29.5 ± 6.6 min. Further increasing H2O2:H2S ratios to 2:1 and 4:1, reduced t½ to 21.7 ± 5.2 and 17.4 ± 6.1 min, respectively. Similarly, a dosage of H2O2 at a ratio of 1:1 in RAS water resulted in a considerably shorter t½ of 86.1 ± 10.1 min. The influence of organic matter on the required H2O2 dose was demonstrated by the t½, which were reduced by 49% in RAS water and 75% in SW. NO3- was not found to be involved in the chemical removal of H2S. The results provide an improved understanding of the influence of RAS water chemistry and quality on H2S kinetics and the direct applicability of the kinetics for treating acute H2S levels in RAS to avoid mass mortalities. In conclusion, the addition of H2O2 is an efficient water treatment technology for H2S removal, and by adjusting H2O2 dosages accordingly to the concentrations of H2S and specific systems water parameters, a t½ <30 min can be achieved. Thus the technology is applicable in an industrial RAS, as a treatment process for acute levels of the hazardous gas H2S that is easily implemented, and safe for the fish.


Subject(s)
Hydrogen Peroxide , Water Purification , Animals , Aquaculture , Nitrates , Oxygen , Water Purification/methods
4.
Article in English | MEDLINE | ID: mdl-33857591

ABSTRACT

The Nile tilapia (Oreochromis niloticus) is widely farmed in tropical and subtropical pond culture. O. niloticus is recognized as a species that is tolerant of hypoxic conditions, a trait that may largely be responsible for the success of this species in aquaculture. Until now, neither coping mechanisms nor a comparison of various indices of hypoxia tolerance to characterize the response to hypoxia, have been described. In the present study, Nile tilapia were subjected to hypoxia of increasing severity and duration to examine effects on metabolic rate (MO2) and post hypoxic oxygen debt. MO2 was measured during periods of severe hypoxia at 2.1 kPa O2 (10% oxygen saturation) lasting between 2 and 24 h at 27 °C. Hypoxia tolerance was assessed by determining the critical oxygen tension (Pcrit) and the pO2 at which loss of equilibrium (LOE) occurred. We show that the tolerance of Nile tilapia to severe hypoxia is largely achieved through a capacity for metabolic depression. Despite prolonged exposure to dissolved oxygen levels below Pcrit, the fish showed little excess post-hypoxic oxygen consumption (EPHOC) upon return to normoxic conditions. LOE did not occur until conditions became near-anoxic. Blood pH was not affected by severe hypoxia (2.1 kPa O2), but a significant acidosis occurred during LOE, accompanied by a significant elevation in lactate and glucose levels. The results from the present study indicate that Nile tilapia do not switch to anaerobic metabolism during hypoxia until pO2 falls below 2.1 kPa.


Subject(s)
Cichlids/metabolism , Hypoxia/metabolism , Oxygen Consumption/physiology , Oxygen Saturation , Acidosis/metabolism , Adaptation, Psychological , Anaerobiosis , Animals , Aquaculture , Blood Glucose/analysis , Gills/metabolism , Glucose/metabolism , Hydrogen-Ion Concentration , Lactic Acid/blood , Lactic Acid/metabolism , Male , Oxygen/metabolism , Regression Analysis , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...