Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Acta Paediatr ; 113(2): 286-295, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37955331

ABSTRACT

AIM: To investigate the prevalence and possible risk factors for the development of impaired glucose metabolism in children and adolescents with obesity. METHODS: This was a cross-sectional retrospective cohort study, including 634 patients with obesity and 98 normal weight controls aged 4-18 years from the Beta-cell function in Juvenile Diabetes and Obesity (Beta-JUDO) cohort, a dual-centre study at Uppsala University Hospital (Sweden) and Paracelsus Medical University Hospital (Salzburg, Austria) conducted between 2012 and 2021. A longitudinal subgroup analysis, including 188 of these subjects was performed. Impaired glucose metabolism was diagnosed by oral glucose tolerance tests according to American Diabetes Association criteria. RESULTS: The prevalence of impaired glucose metabolism was 72% in Uppsala patients, 24% in Salzburg patients, 30% in Uppsala controls and 13% in Salzburg controls. The prevalence was lower at the follow-up visits compared with baseline both in Uppsala and Salzburg patients. A family history of type 2 diabetes showed the strongest association with impaired glucose metabolism at the follow-up visits besides belonging to the Uppsala cohort. CONCLUSION: The prevalence of impaired glucose metabolism was extraordinarily high in Swedish children and adolescents with obesity, but decreased during the follow-up period.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose Intolerance , Pediatric Obesity , Child , Adolescent , Humans , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/metabolism , Sweden/epidemiology , Glucose Intolerance/epidemiology , Glucose Intolerance/etiology , Glucose Intolerance/metabolism , Pediatric Obesity/epidemiology , Pediatric Obesity/complications , Prevalence , Retrospective Studies , Cross-Sectional Studies , Blood Glucose/metabolism , Risk Factors
2.
Mol Metab ; 79: 101846, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38030123

ABSTRACT

Hepatocellular carcinoma (HCC) is characterized by a low and variable response to chemotherapeutic treatments. One contributing factor to the overall pharmacodynamics is the activation of endoplasmic reticulum (ER) stress pathways. This is a cellular stress mechanism that becomes activated when the cell's need for protein synthesis surpasses the ER's capacity to maintain accurate protein folding, and has been implicated in creating drug-resistance in several solid tumors. OBJECTIVE: To identify the role of ER-stress and lipid metabolism in mediating drug response in HCC. METHODS: By using a chemically-induced mouse model for HCC, we administered the ER-stress inhibitor 4µ8C and/or doxorubicin (DOX) twice weekly for three weeks post-tumor initiation. Histological analyses were performed alongside comprehensive molecular biology and lipidomics assessments of isolated liver samples. In vitro models, including HCC cells, spheroids, and patient-derived liver organoids were subjected to 4µ8C and/or DOX, enabling us to assess their synergistic effects on cellular viability, lipid metabolism, and oxygen consumption rate. RESULTS: We reveal a pivotal synergy between ER-stress modulation and drug response in HCC. The inhibition of ER-stress using 4µ8C not only enhances the cytotoxic effect of DOX, but also significantly reduces cellular lipid metabolism. This intricate interplay culminates in the deprivation of energy reserves essential for the sustenance of tumor cells. CONCLUSIONS: This study elucidates the interplay between lipid metabolism and ER-stress modulation in enhancing doxorubicin efficacy in HCC. This novel approach not only deepens our understanding of the disease, but also uncovers a promising avenue for therapeutic innovation. The long-term impact of our study could open the possibility of ER-stress inhibitors and/or lipase inhibitors as adjuvant treatments for HCC-patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Humans , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Lipid Metabolism , Endoplasmic Reticulum Stress , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Cell Line, Tumor
3.
Front Endocrinol (Lausanne) ; 14: 1293093, 2023.
Article in English | MEDLINE | ID: mdl-38027106

ABSTRACT

Background: GLP-1 receptor agonists (GLP-1RA) are increasingly used to treat adolescent obesity. However, the effect on endogenous GLP-1 secretory patterns following treatment in adolescents is unknown. The GLP-1RA exenatide was shown to significantly lower BMI and 2-hour glucose in adolescents with obesity, in the placebo-controlled, randomized controlled trial Combat-JUDO. The aim of this study was to evaluate effects of weekly injections of 2 mg exenatide extended release on secretory patterns of endogenous hormones during OGTT. Subjects and Measurements: This study was a pre-planned sub-study of the Combat-JUDO trial, set at the Pediatric clinic at Uppsala University Hospital, Sweden and Paracelsus Medical University, Austria. 44 adolescents with obesity were included and randomized 1:1 to treatment:placebo. 19 patients in the treatment group and 18 in the placebo group completed the trial. Before and after treatment, GLP-1, glucose, insulin, glucagon and glicentin levels were measured during OGTT; DPP-4 and proinsulin were measured at fasting. A per-protocol approach was used in the analyses. Results: Exenatide treatment did not affect GLP-1 levels during OGTT. Treatment significantly lowered DPP-4, proinsulin and the proinsulin-to-insulin ratio at fasting, increased glicentin levels but did not affect insulin, C-peptide or glucagon levels during OGTT. Conclusion: Weekly s.c. injections with 2 mg of exenatide maintains endogenous total GLP-1 levels and lowers circulating DPP-4 levels. This adds an argument in favor of using exenatide in the treatment of pediatric obesity. Clinical trial registration: clinicaltrials.gov, identifier NCT02794402.


Subject(s)
Glucagon-Like Peptide 1 , Pediatric Obesity , Child , Humans , Adolescent , Exenatide , Pediatric Obesity/drug therapy , Glucagon , Glycemic Control , Proinsulin , Glicentin , Insulin , Glucose
4.
Ann Nutr Metab ; 79(6): 522-527, 2023.
Article in English | MEDLINE | ID: mdl-37883939

ABSTRACT

INTRODUCTION: Obesity is associated with chronic inflammation. Chronic inflammation has also been linked to insulin resistance and type 2 diabetes, metabolic associated fatty liver disease, and cardiovascular disease. Glucagon-like peptide-1 (GLP-1) receptor analogs (GLP-1RA) are clinically used to treat obesity, with known anti-inflammatory properties. How the GLP-1RA exenatide effects inflammation in adolescents with obesity is not fully investigated. METHODS: Forty-four patients were randomized to receive weekly subcutaneous injections with either 2 mg exenatide or placebo for 6 months. Plasma samples were collected at baseline and at the end of the study, and 92 inflammatory proteins were measured. RESULTS: Following treatment with exenatide, 15 out of the 92 proteins were decreased, and one was increased. However, after adjustment for multiple testing, only IL-18Rα was significantly lowered following treatment. CONCLUSIONS: Weekly injections with 2 mg of exenatide lowers circulating IL-18Rα in adolescents with obesity, which may be a potential link between exenatide and its anti-inflammatory effect in vivo. This contributes to exenatide's pharmaceutical potential as a treatment for obesity beyond weight control and glucose tolerance, and should be further studied mechanistically.


Subject(s)
Diabetes Mellitus, Type 2 , Martial Arts , Pediatric Obesity , Adolescent , Humans , Exenatide/therapeutic use , Hypoglycemic Agents/therapeutic use , Pediatric Obesity/complications , Peptides/therapeutic use , Venoms/therapeutic use , Inflammation/drug therapy , Glucagon-Like Peptide-1 Receptor/therapeutic use
5.
J Vet Intern Med ; 37(6): 2520-2528, 2023.
Article in English | MEDLINE | ID: mdl-37864426

ABSTRACT

BACKGROUND: Decreasing hyperinsulinemia is crucial in preventing laminitis in insulin dysregulated (ID) horses. Complementary pharmacological treatments that efficiently decrease postprandial hyperinsulinemia in ID horses are needed. OBJECTIVES: Compare short-term effects of canagliflozin vs placebo on glucose and insulin responses to an oral sugar test (OST) as well as the effects on body weight and triglyceride concentrations in horses with ID. ANIMALS: Sixteen privately-owned ID horses. METHODS: A single-center, randomized, double-blind, placebo-controlled, parallel design study. The horses were randomized (ratio 1:1) to either once daily PO treatment with 0.6 mg/kg canagliflozin or placebo. The study consisted of an initial 3-day period for obtaining baseline data, a 3-week double-blind treatment period at home, and a 3-day follow-up period similar to the initial baseline period but with continued double-blind treatment. Horses were subjected to an 8-sample OST in the morning of the third day on both visits. RESULTS: Maximal geometric least square (LS) mean insulin concentration (95% confidence interval [CI]) during the OST decreased after 3 weeks of canagliflozin treatment compared with placebo (83.2; 55.4-125.0 vs 215.2; 143.2-323.2 µIU/mL). The geometric LS mean insulin response (insulin AUC0-180 ) for canagliflozin-treated horses was >66% lower compared with placebo. Least square mean body weight decreased by 11.1 (4-18.1) kg and LS mean triglyceride concentrations increased by 0.99 (0.47-1.5) mmol/L with canagliflozin treatment. CONCLUSIONS AND CLINICAL IMPORTANCE: Canagliflozin is a promising drug for treatment of ID horses that requires future studies.


Subject(s)
Blood Glucose , Canagliflozin , Hyperinsulinism , Insulin , Animals , Horses , Canagliflozin/pharmacology , Insulin/blood , Hyperinsulinism/drug therapy , Hyperinsulinism/veterinary , Horse Diseases/drug therapy , Triglycerides/blood , Body Weight , Male , Female
6.
Diabetes Obes Metab ; 25(12): 3757-3765, 2023 12.
Article in English | MEDLINE | ID: mdl-37694762

ABSTRACT

AIM: To elucidate how proinsulin synthesis and insulin was affected by metformin under conditions of nutrient overstimulation. MATERIALS AND METHODS: Isolated human pancreatic islets from seven donors were cultured at 5.5 mmol/L glucose and 0.5 mmol/L palmitate for 12, 24 or 72 h. Metformin (25 µmol/L) was introduced after initial 12 h with palmitate. Proinsulin and insulin were measured. Expression of prohormone convertase 1/3 (PC1/3) and carboxypeptidase E (CPE), was determined by western blot. Adolescents with obesity, treated with metformin and with normal glucose tolerance (n = 5), prediabetes (n = 14), or type 2 diabetes (T2DM; n = 7) were included. Fasting proinsulin, insulin, glucose, 2-h glucose and glycated haemoglobin were measured. Proinsulin/insulin ratio (PI/I) was calculated. RESULTS: In human islets, palmitate treatment for 12 and 24 h increased proinsulin and insulin proportionally. After 72 h, proinsulin but not insulin continued to increase which was coupled with reduced expression of PC1/3 and CPE. Metformin normalized expression of PC1/3 and CPE, and proinsulin and insulin secretion. In adolescents with obesity, before treatment, fasting proinsulin and insulin concentrations were higher in subjects with T2DM than with normal glucose tolerance. PI/I was reduced after metformin treatment in subjects with T2DM as well as in subjects with prediabetes, coupled with reduced 2-h glucose and glycated haemoglobin. CONCLUSIONS: Metformin normalized proinsulin and insulin secretion after prolonged nutrient-overstimulation, coupled with normalization of the converting enzymes, in isolated islets. In adolescents with obesity, metformin treatment was associated with improved PI/I, which was coupled with improved glycaemic control.


Subject(s)
Diabetes Mellitus, Type 2 , Islets of Langerhans , Metformin , Pediatric Obesity , Prediabetic State , Adolescent , Humans , Insulin/metabolism , Proinsulin , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Metformin/pharmacology , Metformin/therapeutic use , Palmitates/metabolism , Prediabetic State/drug therapy , Prediabetic State/metabolism , Glycated Hemoglobin , Pediatric Obesity/metabolism , Islets of Langerhans/metabolism , Insulin, Regular, Human , Carboxypeptidase H , Glucose/metabolism
7.
Metabolites ; 13(8)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37623862

ABSTRACT

In children with obesity, insulin hypersecretion is proposed to precede insulin resistance. We investigated if metformin could be used to attenuate insulin secretion from palmitate-treated isolated islets and its implication for children with obesity. Human islets were exposed to palmitate for 0.5 or 1 day, when metformin was introduced. After culture, glucose-stimulated insulin secretion (GSIS) was measured. Children with obesity, who had received metformin for over six months (n = 21, age 13.9 ± 1.8), were retrospectively evaluated. Children were classified as either "reducing" or "increasing" based on the difference between AUC0-120 of insulin during OGTT before and after metformin treatment. In human islets, GSIS increased after culture in palmitate for up to 1 day but declined with continued palmitate exposure. Whereas adding metformin after 1 day of palmitate exposure increased GSIS, adding metformin after 0.5 days reduced GSIS. In children with "reducing" insulin AUC0-120 (n = 9), 2 h glucose and triglycerides decreased after metformin treatment, which was not observed in patients with "increasing" insulin AUC0-120 (n = 12). In isolated islets, metformin attenuated insulin hypersecretion if introduced when islet secretory capacity was maintained. In children with obesity, improved glycemic and lipid levels were accompanied by reduced insulin levels during OGTT after metformin treatment.

8.
Metabolites ; 13(7)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37512487

ABSTRACT

(1) Background: Deficiencies of mitochondrial fatty acid oxidation (FAO) define a subgroup of inborn errors of metabolism, with medium-chain acyl-CoA dehydrogenase deficiency (MCAD) and very long-chain acyl-CoA dehydrogenase deficiency (VLCAD) being two of the most common. Hypoketotic hypoglycemia is a feared clinical complication and the treatment focuses on avoiding hypoglycemia. In contrast, carnitine uptake deficiency (CUD) is treated as a mild disease without significant effects on FAO. Impaired FAO has experimentally been shown to impair glucagon secretion. Glucagon is an important glucose-mobilizing hormone. If and how glucagon is affected in patients with VLCAD or MCAD remains unknown. (2) Methods: A cross-sectional study was performed with plasma hormone concentrations quantified after four hours of fasting. Patients with VLCAD (n = 10), MCAD (n = 7) and CUD (n = 6) were included. (3) Results: The groups were similar in age, sex, weight, and height. The glucagon and insulin levels were significantly lower in the VLCAD group compared to the CUD group (p < 0.05, respectively). The patients with CUD had glucagon concentrations similar to the normative data. No significant differences were seen in GLP-1, glicentin, glucose, amino acids, or NEFAs. (4) Conclusions: Low fasting concentrations of glucagon are present in patients with VLCAD and cannot be explained by altered stimuli in plasma.

9.
Front Endocrinol (Lausanne) ; 13: 1004128, 2022.
Article in English | MEDLINE | ID: mdl-36133310

ABSTRACT

Objective: Over the years, non-alcoholic fatty liver (NAFLD) disease has progressed to become the most frequent chronic liver disease in children and adolescents. The full pathology is not yet known, but disease progression leads to cirrhosis and hepatocellular carcinoma. Risk factors included hypercaloric diet, obesity, insulin resistance and genetics. Hyperglucagonemia appears to be a pathophysiological consequence of hepatic steatosis, thus, the hypothesis of the study is that hepatic fat accumulation leads to increased insulin resistance and impaired glucagon metabolism leading to hyperglucagonemia in pediatric NAFLD. Methods: 132 children and adolescents between 10 and 18 years, with varying degrees of obesity, were included in the study. Using Magnetic Resonance Imaging (MRI) average liver fat was determined, and patients were stratified as NAFLD (>5% liver fat content) and non-NAFLD (<5%). All patients underwent a standardized oral glucose tolerance test (OGTT). Additionally, anthropometric parameters (height, weight, BMI, waist circumference, hip circumference) such as lab data including lipid profile (triglycerides, HDL, LDL), liver function parameters (ALT, AST), uric acid, glucose metabolism (fasting insulin and glucagon, HbA1c, glucose 120 min) and indices evaluating insulin resistance (HIRI, SPISE, HOMA-IR, WBISI) were measured. Results: Children and adolescents with NAFLD had significantly higher fasting glucagon values compared to the non-NAFLD cohort (p=0.0079). In the NAFLD cohort univariate analysis of fasting glucagon was associated with BMI-SDS (p<0.01), visceral adipose tissue volume (VAT) (p<0.001), average liver fat content (p<0.001), fasting insulin concentration (p<0.001), triglycerides (p<0.001) and HDL (p=0.034). This correlation equally applied to all insulin indices HOMA-IR, WBISI, HIRI (all p<0.001) and SPISE (p<0.002). Multivariate analysis (R² adjusted 0.509) for the same subgroup identified HIRI (p=0.003) and VAT volume (p=0.017) as the best predictors for hyperglucagonemia. Average liver fat content is predictive in pediatric overweight and obesity but not NAFLD. Conclusions: Children and adolescents with NAFLD have significantly higher fasting plasma glucagon values, which were best predicted by hepatic insulin resistance and visceral adipose tissue, but not average liver fat content.


Subject(s)
Insulin Resistance , Non-alcoholic Fatty Liver Disease , Adolescent , Child , Glucagon , Glucose , Glycated Hemoglobin , Humans , Insulin , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/complications , Triglycerides , Uric Acid
10.
Cancers (Basel) ; 14(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35805002

ABSTRACT

Neuroblastoma, the most common solid tumor in children, is characterized by amplification of the MYCN proto-oncogene, a high-risk aggressive clinical marker associated with treatment failure. MYCN plays an important role in cell growth, proliferation, metabolism, and chemoresistance. Here, we show for the first time that in neuroblastoma, iron chelator VLX600 inhibits mitochondrial respiration, decreases expression levels of MYCN/LMO1, and induces an efficient cell death regardless of MYCN status in both 2D and 3D culture conditions. Moreover, insufficient induction of autophagy was observed in cells treated with VLX600, which is essential as a protective response in the event of ATP synthesis disruption. Further inhibition of glucose uptake using DRB18, a pan-GLUT (glucose transporter) inhibitor, synergized the effect of VLX600 and no significant cell death was found in immortalized epithelial cells under this combination treatment. Our results demonstrate that inhibition of mitochondrial respiration by iron chelator VLX600 accompanied by autophagy deficiency promotes sensitivity of neuroblastoma cells in a nutrition-restricted microenvironment regardless of MYCN status, indicating that MYCN expression level is an essential clinical marker but might not be a necessary target for the treatment of neuroblastoma which warrants further investigation. VLX600 has been studied in Phase I clinical trials; combining VLX600 with conventional chemotherapy could be an innovative therapeutic strategy for neuroblastoma.

11.
Ups J Med Sci ; 1272022.
Article in English | MEDLINE | ID: mdl-35846851

ABSTRACT

Background: Obesity in adolescents is increasing worldwide and associated with an elevated cardiovascular risk later in life. In a group-comparative study, we investigated the association between adiposity in adolescents and signs of vascular aging and inflammation. Methods: Thirty-nine adolescents (10-18 years old), 19 with obesity and 20 with normal weight, were enrolled. The intima thickness and intima/media thickness ratio (I/M) were assessed using high-resolution ultrasound in the common carotid artery (center frequency 22 MHz) and the distal radial artery (RA; 50 MHz). Increased intima and high I/M are signs of vascular aging. Body characteristics, high-sensitivity C-reactive protein (hs-CRP), plasma lipids, and glycemic parameters were measured. Results: Adolescents with obesity, compared to normal-weight peers, had elevated plasma lipid, insulin c-peptide, and hs-CRP levels, the latter increasing exponentially with increasing adiposity. Obese adolescents had a thicker RA intima layer [0.005 mm; 95% confidence intervals (0.000, 0.009); P = 0.043] and a higher RA I/M [0.10; (0.040, 0.147); P < 0.0007]. Group differences for the RA I/M remained significant after adjustment for age, sex, fasting plasma insulin, and body mass index, both separately and together (P = 0.032). The RA I/M was correlated with hs-CRP, and both were correlated with the analyzed cardiovascular risk factors. Receiver operating curve c-values for RA I/M (0.86) and hs-CRP (0.90) strongly indicated correct placement in the obese or non-obese group. Conclusions: Adolescents with obesity had significantly more extensive vascular aging in the muscular RA, than normal-weight peers. The findings support an inflammatory link between obesity and vascular aging in adolescents.


Subject(s)
Insulins , Pediatric Obesity , Adolescent , Aging , C-Reactive Protein/analysis , Carotid Intima-Media Thickness , Child , Humans , Pediatric Obesity/complications , Risk Factors
12.
Eur J Pediatr ; 181(8): 3119-3129, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35771354

ABSTRACT

To compare patterns of sedentary (SED) time (more sedentary, SED + vs less sedentary, SED-), moderate to vigorous physical activity (MVPA) time (more active, MVPA + vs less active, MVPA-), and combinations of behaviors (SED-/MVPA + , SED-/MVPA-, SED + /MVPA + , SED + /MVPA-) regarding nonalcoholic fatty liver diseases (NAFLD) markers. This cross-sectional study included 134 subjects (13.4 ± 2.2 years, body mass index (BMI) 98.9 ± 0.7 percentile, 48.5% females) who underwent 24-h/7-day accelerometry, anthropometric, and biochemical markers (alanine aminotransferase (ALT) as first criterion, and aspartate aminotransferase (AST), gamma-glutamyl transpeptidase (GGT), AST/ALT ratio as secondary criteria). A subgroup of 39 patients underwent magnetic resonance imaging-liver fat content (MRI-LFC). Hepatic health was better in SED- (lower ALT, GGT, and MRI-LFC (p < 0.05), higher AST/ALT (p < 0.01)) vs SED + and in MVPA + (lower ALT (p < 0.05), higher AST/ALT (p < 0.01)) vs MVPA- groups after adjustment for age, gender, and Tanner stages. SED-/MVPA + group had the best hepatic health. SED-/MVPA- group had lower ALT and GGT and higher AST/ALT (p < 0.05) in comparison with SED + /MVPA + group independently of BMI. SED time was positively associated with biochemical (high ALT, low AST/ALT ratio) and imaging (high MRI-LFC) markers independently of MVPA. MVPA time was associated with biochemical markers (low ALT, high AST/ALT) but these associations were no longer significant after adjustment for SED time. CONCLUSION: Lower SED time is associated with better hepatic health independently of MVPA. Reducing SED time might be a first step in the management of pediatric obesity NAFLD when increasing MVPA is not possible. WHAT IS KNOWN: • MVPA and SED times are associated with cardiometabolic risks in youths with obesity. • The relationships between NAFLD markers and concomitant MVPA and SED times have not been studied in this population. WHAT IS NEW: • Low SED time is associated with healthier liver enzyme profiles and LFC independent of MVPA. • While low SED/high MVPA is the more desirable pattern, low SED/low MVPA pattern would have healthier liver enzyme profile compared with high MVPA/high SED, independent of BMI, suggesting that reducing SED time irrespective of MVPA is needed to optimize liver health.


Subject(s)
Alanine Transaminase , Non-alcoholic Fatty Liver Disease , Pediatric Obesity , Sedentary Behavior , Adolescent , Alanine Transaminase/blood , Aspartate Aminotransferases , Biomarkers/blood , Child , Cross-Sectional Studies , Exercise/physiology , Female , Humans , Liver , Male , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/physiopathology , Pediatric Obesity/blood , Pediatric Obesity/physiopathology
13.
Front Endocrinol (Lausanne) ; 13: 830012, 2022.
Article in English | MEDLINE | ID: mdl-35185803

ABSTRACT

Background: Attenuated insulin-sensitivity (IS) is a central feature of pediatric non-alcoholic fatty liver disease (NAFLD). We recently developed a new index, single point insulin sensitivity estimator (SPISE), based on triglycerides, high-density-lipoprotein and body-mass-index (BMI), and validated by euglycemic-hyperinsulinemic clamp-test (EHCT) in adolescents. This study aims to assess the performance of SPISE as an estimation of hepatic insulin (in-)sensitivity. Our results introduce SPISE as a novel and inexpensive index of hepatic insulin resistance, superior to established indices in children and adolescents with obesity. Materials and Methods: Ninety-nine pubertal subjects with obesity (13.5 ± 2.0 years, 59.6% males, overall mean BMI-SDS + 2.8 ± 0.6) were stratified by MRI (magnetic resonance imaging) into a NAFLD (>5% liver-fat-content; male n=41, female n=16) and non-NAFLD (≤5%; male n=18, female n=24) group. Obesity was defined according to WHO criteria (> 2 BMI-SDS). EHCT were used to determine IS in a subgroup (n=17). Receiver-operating-characteristic (ROC)-curve was performed for diagnostic ability of SPISE, HOMA-IR (homeostatic model assessment for insulin resistance), and HIRI (hepatic insulin resistance index), assuming null hypothesis of no difference in area-under-the-curve (AUC) at 0.5. Results: SPISE was lower in NAFLD (male: 4.8 ± 1.2, female: 4.5 ± 1.1) than in non-NAFLD group (male 6.0 ± 1.6, female 5.6 ± 1.5; P< 0.05 {95% confidence interval [CI]: male NAFLD 4.5, 5.2; male non-NAFLD 5.2, 6.8; female NAFLD 4.0, 5.1, female non-NAFLD 5.0, 6.2}). In males, ROC-AUC was 0.71 for SPISE (P=0.006, 95% CI: 0.54, 0.87), 0.68 for HOMA-IR (P=0.038, 95% CI: 0.48, 0.88), and 0.50 for HIRI (P=0.543, 95% CI: 0.27, 0.74). In females, ROC-AUC was 0.74 for SPISE (P=0.006), 0.59 for HOMA-IR (P=0.214), and 0.68 for HIRI (P=0.072). The optimal cutoff-level for SPISE between NAFLD and non-NAFLD patients was 5.18 overall (Youden-index: 0.35; sensitivity 0.68%, specificity 0.67%). Conclusion: SPISE is significantly lower in juvenile patients with obesity-associated NAFLD. Our results suggest that SPISE indicates hepatic IR in pediatric NAFLD patients with sensitivity and specificity superior to established indices of hepatic IR.


Subject(s)
Insulin Resistance , Non-alcoholic Fatty Liver Disease , Adolescent , Body Mass Index , Child , Female , Humans , Insulin , Male , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/pathology , Triglycerides
14.
Pediatr Obes ; 17(8): e12906, 2022 08.
Article in English | MEDLINE | ID: mdl-35226970

ABSTRACT

BACKGROUND: During perimenopause, the rise in serum follicle-stimulating hormone (FSH) is associated with increased adiposity, insulin resistance (IR), and metabolic syndrome (MetS). However, data for the pubertal period, which is characterized by increasing FSH levels and changing body composition, are limited. OBJECTIVES: To investigate the relationships between FSH and anthropometric changes, IR markers, and development of MetS in the peripubertal period. METHODS: Uppsala Longitudinal Study of Childhood Obesity (ULSCO) is an ongoing study that aims to understand the factors contributing to childhood obesity and the development of obesity-related diseases. We analysed the subset of participants who were prepubertal at the first visit (n = 95, 77 with obesity). Mean follow-up time was 3.0 ± 1.4 years. RESULTS: Higher serum FSH levels at the first visit were associated with an increased likelihood of elevation in body mass index (BMI SDS) (p = 0.025, OR = 16.10) and having MetS (p = 0.044, OR = 4.67) at the follow-up. We observed nonlinear relationships between varying serum FSH levels and markers of adiposity and IR, especially in girls. At the first visit, when girls were prepubertal, FSH was negatively associated with BMI (ß = -0.491, p = 0.005) and positively associated with sex hormone-binding globulin (SHBG) (ß = 0.625, p = 0.002). With the progression of puberty, negative associations between BMI and SHBG disappeared while FSH became positively associated with HOMA-IR (ß = 0.678, p = 0.025) and fasting insulin (ß = 0.668, p = 0.027). CONCLUSIONS: Higher serum FSH levels in prepubertal children were associated with an increased risk of MetS development during pubertal transition. Along with nonlinear associations between varying serum FSH levels and IR markers, our results might imply a relationship between FSH and IR of puberty.


Subject(s)
Follicle Stimulating Hormone , Metabolic Syndrome , Pediatric Obesity , Puberty , Body Mass Index , Child , Female , Follicle Stimulating Hormone/blood , Humans , Insulin Resistance , Longitudinal Studies , Male , Metabolic Syndrome/epidemiology , Pediatric Obesity/epidemiology , Puberty/physiology
15.
Pediatr Obes ; 17(7): e12897, 2022 07.
Article in English | MEDLINE | ID: mdl-35083885

ABSTRACT

BACKGROUND: Relationships between movement-related behaviours and metabolic health remain underexplored in adolescents with obesity. OBJECTIVES: To compare profiles of sedentary time (more sedentary, SED+ vs. less sedentary, SED-), moderate to vigorous physical activity (MVPA) time (more active, MVPA+ vs. less active, MVPA-) and combinations of behaviours (SED-/MVPA+, SED-/MVPA-, SED+/MVPA+, SED+/MVPA-) in regard to metabolic health. METHODS: One hundred and thirty-four subjects (mean age 13.4 ± 2.2 yrs, mean body mass index [BMI] 98.9 ± 0.7 percentile, 48.5% females) underwent 24 h/7 day accelerometry, anthropometric, body composition, blood pressure (BP), lipid profile and insulin resistance (IR) assessments. RESULTS: Metabolic health was better in SED- [lower fat mass (FM) percentage (p < 0.05), blood pressure (BP) (p < 0.05), homeostasis model assessment of insulin resistance (HOMA-IR) (p < 0.001) and metabolic syndrome risk score (MetScore) (p < 0.001), higher high-density lipoprotein-cholesterol (HDL-c) (p = 0.001)] vs. SED+ group and in MVPA+ [lower triglyceridemia (TG), (p < 0.05), HOMA-IR (p < 0.01) and MetScore (p < 0.001), higher HDL-c (p < 0.01)] vs. MVPA- group after adjustment with age, gender, maturation and BMI. SED-/MVPA+ group had the best metabolic health. While sedentary (p < 0.001) but also MVPA times (p < 0.001) were lower in SED-/MVPA- vs. SED+/MVPA+, SED-/MVPA- had lower FM percentage (p < 0.05), HOMA-IR (p < 0.01) and MetScore (p < 0.05) and higher HDL-c (p < 0.05), independently of BMI. Sedentary time was positively correlated with HOMA-IR and Metscore and negatively correlated with HDL-c after adjustment with MVPA (p < 0.05). MVPA was negatively correlated with HOMA-IR, BP and MetScore and positively correlated with HDL-c after adjustment with sedentary time (p < 0.05). CONCLUSION: Lower sedentary time is associated with a better metabolic health independently of MVPA and might be a first step in the management of pediatric obesity when increasing MVPA is not possible.


Subject(s)
Insulin Resistance , Martial Arts , Pediatric Obesity , Adolescent , Body Mass Index , Child , Cholesterol, HDL , Cross-Sectional Studies , Exercise , Female , Humans , Male , Pediatric Obesity/epidemiology , Pediatric Obesity/metabolism , Sedentary Behavior , Waist Circumference
16.
Biochem Med (Zagreb) ; 32(1): 011001, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34955677

ABSTRACT

During a dual-center study on obese and normal weight children and adolescents, focusing on glucose metabolism, we observed a marked difference in glucose results (N = 16,840) between the two sites, Salzburg, Austria and Uppsala, Sweden (P < 0.001). After excluding differences in patient characteristics between the two populations as cause of this finding, we investigated other preanalytic influences. Finally, only the tubes used for blood collection at the two sites were left to evaluate. While the Vacuette FC-Mix tube (Greiner Bio-One, Kremsmünster, Austria) was used in Uppsala, in Salzburg blood collections were performed with a lithium heparin tube (LH-Monovette, Sarstedt, Germany). To prove our hypothesis, we collected two blood samples in either of these tubes from 51 children (Salzburg N = 27, Uppsala N = 24) and compared the measured glucose results. Indeed, we found the suspected bias and calculated a correction formula, which significantly diminished the differences of glucose results between the two sites (P = 0.023). Our finding is in line with those of other studies and although this issue should be widely known, we feel that it is widely neglected, especially when comparing glucose concentrations across Europe, using large databases without any information on preanalytic sample handling.


Subject(s)
Blood Specimen Collection , Glucose , Adolescent , Blood Glucose , Child , Europe , Heparin , Humans
17.
Clin Transl Sci ; 15(1): 182-194, 2022 01.
Article in English | MEDLINE | ID: mdl-34437764

ABSTRACT

Inborn errors of mitochondrial fatty acid oxidation (FAO), such as medium-chain acyl-CoA dehydrogenase deficiency (MCAD) and very long-chain acyl-CoA dehydrogenase deficiency (VLCAD) affects cellular function and whole-body metabolism. Carnitine uptake deficiency (CUD) disturbs the transportation of fatty acids into the mitochondria, but when treated is a mild disease without significant effects on FAO. For improved clinical care of VLCAD in particular, estimation of FAO severity could be important. We have investigated whether the oxygen consumption rate (OCR) of peripheral blood mononuclear cells (PBMCs) obtained from patients with MCAD, VLCAD, and CUD can be used to study cellular metabolism in patients with FAO defects and to determine the severity of FAO impairment. PBMCs were isolated from patients with VLCAD (n = 9), MCAD (n = 5-7), and CUD (n = 5). OCR was measured within 6-hours of venous puncture using the Seahorse XFe96. The PBMCs were exposed to glucose alone or with caprylic acid (C8:0) or palmitic acid (C16:0). OCR was significantly lower in cells from patients with ß-oxidation deficiencies (MCAD and VLCAD) compared to CUD at basal conditions. When exposed to C16:0, OCR in VLCAD cells was unchanged, whereas OCR in MCAD cells increased but not to the levels observed in CUD. However, C8:0 did not increase OCR, as would be expected, in VLCAD cells. There was no clear relationship between clinical severity level and OCR. In patients with ß-oxidation deficiencies, changes of mitochondrial respiration in PBMCs are detectable, which indicate that PBMCs have translational potential for studies of ß-oxidation defects. However, further studies are warranted.


Subject(s)
Acyl-CoA Dehydrogenase, Long-Chain/genetics , Leukocytes, Mononuclear , Metabolism, Inborn Errors/genetics , Mitochondria/genetics , Mitochondria/metabolism , Oxidation-Reduction , Acyl-CoA Dehydrogenase, Long-Chain/deficiency , Cardiomyopathies , Carnitine/deficiency , Child , Child, Preschool , Female , Genotype , Humans , Hyperammonemia , Male , Muscular Diseases
18.
J Cell Sci ; 135(5)2022 03 01.
Article in English | MEDLINE | ID: mdl-34821358

ABSTRACT

Endoplasmic reticulum (ER)-plasma membrane (PM) contacts are sites of lipid exchange and Ca2+ transport, and both lipid transport proteins and Ca2+ channels specifically accumulate at these locations. In pancreatic ß-cells, both lipid and Ca2+ signaling are essential for insulin secretion. The recently characterized lipid transfer protein TMEM24 (also known as C2CD2L) dynamically localizes to ER-PM contact sites and provides phosphatidylinositol, a precursor of phosphatidylinositol-4-phosphate [PI(4)P] and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], to the PM. ß-cells lacking TMEM24 exhibit markedly suppressed glucose-induced Ca2+ oscillations and insulin secretion, but the underlying mechanism is not known. We now show that TMEM24 only weakly interacts with the PM, and dissociates in response to both diacylglycerol and nanomolar elevations of cytosolic Ca2+. Loss of TMEM24 results in hyper-accumulation of Ca2+ in the ER and in excess Ca2+ entry into mitochondria, with resulting impairment in glucose-stimulated ATP production.


Subject(s)
Calcium , Membrane Proteins , Cell Membrane , Endoplasmic Reticulum/genetics , Homeostasis , Membrane Proteins/genetics
19.
Clin Sci (Lond) ; 135(19): 2243-2263, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34569605

ABSTRACT

The protein tyrosine kinase inhibitor imatinib is used in the treatment of various malignancies but may also promote beneficial effects in the treatment of diabetes. The aim of the present investigation was to characterize the mechanisms by which imatinib protects insulin producing cells. Treatment of non-obese diabetic (NOD) mice with imatinib resulted in increased beta-cell AMP-activated kinase (AMPK) phosphorylation. Imatinib activated AMPK also in vitro, resulting in decreased ribosomal protein S6 phosphorylation and protection against islet amyloid polypeptide (IAPP)-aggregation, thioredoxin interacting protein (TXNIP) up-regulation and beta-cell death. 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) mimicked and compound C counteracted the effect of imatinib on beta-cell survival. Imatinib-induced AMPK activation was preceded by reduced glucose/pyruvate-dependent respiration, increased glycolysis rates, and a lowered ATP/AMP ratio. Imatinib augmented the fractional oxidation of fatty acids/malate, possibly via a direct interaction with the beta-oxidation enzyme enoyl coenzyme A hydratase, short chain, 1, mitochondrial (ECHS1). In non-beta cells, imatinib reduced respiratory chain complex I and II-mediated respiration and acyl-CoA carboxylase (ACC) phosphorylation, suggesting that mitochondrial effects of imatinib are not beta-cell specific. In conclusion, tyrosine kinase inhibitors modestly inhibit mitochondrial respiration, leading to AMPK activation and TXNIP down-regulation, which in turn protects against beta-cell death.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus/drug therapy , Energy Metabolism/drug effects , Hypoglycemic Agents/pharmacology , Imatinib Mesylate/pharmacology , Insulin-Secreting Cells/drug effects , Mitochondria/drug effects , Protein Kinase Inhibitors/pharmacology , Animals , Carrier Proteins/metabolism , Cell Death/drug effects , Cell Line , Cell Respiration/drug effects , Diabetes Mellitus/enzymology , Diabetes Mellitus/pathology , Disease Models, Animal , Enoyl-CoA Hydratase/metabolism , Enzyme Activation , Humans , Insulin-Secreting Cells/enzymology , Insulin-Secreting Cells/pathology , Islet Amyloid Polypeptide/metabolism , Male , Mice, Inbred NOD , Mitochondria/enzymology , Mitochondria/pathology , Phosphorylation , Rats, Sprague-Dawley , Ribosomal Protein S6/metabolism
20.
Metabolites ; 11(9)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34564389

ABSTRACT

Inhibition of 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase is associated with an increased risk of new-onset type 2 diabetes. We studied the association of genetic or pharmacological HMG-CoA reductase inhibition with plasma and adipose tissue (AT) metabolome and AT metabolic pathways. We also investigated the effects of statin-mediated pharmacological inhibition of HMG-CoA reductase on systemic insulin sensitivity by measuring the HOMA-IR index in subjects with or without statin therapy. The direct effects of simvastatin (20-250 nM) or its active metabolite simvastatin hydroxy acid (SA) (8-30 nM) were investigated on human adipocyte glucose uptake, lipolysis, and differentiation and pancreatic insulin secretion. We observed that the LDL-lowering HMGCR rs12916-T allele was negatively associated with plasma phosphatidylcholines and sphingomyelins, and HMGCR expression in AT was correlated with various metabolic and mitochondrial pathways. Clinical data showed that statin treatment was associated with HOMA-IR index after adjustment for age, sex, BMI, HbA1c, LDL-c levels, and diabetes status in the subjects. Supra-therapeutic concentrations of simvastatin reduced glucose uptake in adipocytes and normalized fatty acid-induced insulin hypersecretion from ß-cells. Our data suggest that inhibition of HMG-CoA reductase is associated with insulin resistance. However, statins have a very mild direct effect on AT and pancreas, hence, other tissues as the liver or muscle appear to be of greater importance.

SELECTION OF CITATIONS
SEARCH DETAIL
...