Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 194
Filter
1.
Soft Matter ; 20(10): 2272-2279, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38353286

ABSTRACT

Aggregation of peptide molecules into amyloid fibrils is a characteristic feature of several degenerative diseases. However, the details behind amyloid-formation, and other self-assembled peptide aggregates, remain poorly understood. In this study, we have used small-angle X-ray scattering (SAXS), static and dynamic light scattering (SLS and DLS) as well as cryogenic transmission electron microscopy (cryo-TEM) to determine the structural geometry of self-assembled peptide aggregates in various dilute aqueous solutions. Pramlintide was used as a model peptide to assess the aggregation behaviour of an amyloid-forming peptide. The effects of adding sodium chloride (NaCl), sodium thiocyanate (NaSCN), and sodium fluoride (NaF) and the co-solvent dimethyl sulfoxide (DMSO) on the aggregation behaviour were studied. Our scattering data analysis demonstrates that small oligomeric fibrils aggregate to form networks of supramolecular assemblies with fractal dimensions. The choice of anion in small amounts of added salt has a significant impact on the size of the fibrils as well as on the fractal dimensions of supramolecular clusters. In DMSO the fractal dimension decreased with increasing DMSO concentration, indicating the formation of a less compact structure of the supramolecular assemblies.


Subject(s)
Amyloid , Dimethyl Sulfoxide , Scattering, Small Angle , X-Ray Diffraction , X-Rays , Amyloid/chemistry , Peptides
2.
Langmuir ; 39(32): 11337-11344, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37530182

ABSTRACT

We have observed ultrasmall unilamellar vesicles, with diameters of less than 20 nm, in mixtures of the tricyclic antidepressant drug amitriptyline hydrochloride (AMT) and the unsaturated zwitterionic phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) in physiological saline solution. The size and shape of spontaneously formed self-assembled aggregates have been characterized using complementary techniques, i.e., small-angle neutron and X-ray scattering (SANS and SAXS) and cryo-transmission electron microscopy (cryo-TEM). We observe rodlike mixed micelles in more concentrated samples that grow considerably in length upon dilution, and a transition from micelles to vesicles is observed as the concentration approaches the critical micelle concentration of AMT. Unlike the micelles, the spontaneously formed vesicles decrease in size with each step of dilution, and ultrasmall unilamellar vesicles, with diameters as small as about 15 nm, were observed at the lowest concentrations. The spontaneously formed ultrasmall unilamellar vesicles maintain their size for as long we have investigated them (i.e., several months). To the best of our knowledge, such small vesicles have never before been reported to form spontaneously in a biocompatible phospholipid-based system. Most interestingly, the size of the vesicles was observed to be strongly dependent on the chemical structure of the phospholipid, and in mixtures of AMT and the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), the vesicles were observed to be considerably larger in size. The self-assembly behavior in the phospholipid-drug surfactant system in many ways resembles the formation of equilibrium micelles and vesicles in mixed anionic/cationic surfactant systems.


Subject(s)
Phospholipids , Unilamellar Liposomes , Phospholipids/chemistry , Unilamellar Liposomes/chemistry , Micelles , Scattering, Small Angle , X-Ray Diffraction , Surface-Active Agents/chemistry
3.
Biochim Biophys Acta Biomembr ; 1864(10): 183976, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35662645

ABSTRACT

The influence and interaction of the ionizable amphiphilic drug amitriptyline hydrochloride (AMT) on a 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) phospholipid bilayer supported on a silica surface have been investigated using a combination of neutron reflectometry and quartz crystal microbalance with dissipation monitoring. Adding AMT solutions with concentrations 3, 12, and 50 mM leaves the lipid bilayer mainly intact and we observe most of the AMT molecules attached to the head-group region of the outer bilayer leaflet. Virtually no AMT penetrates into the hydrophilic head-group region of the inner leaflet close to the silica surface. By adding 200 mM AMT solution, the lipid bilayer dissolved entirely, indicating a threshold concentration for the solubilization of the bilayer by AMT. The observed threshold concentration is consistent with the observation that various bilayer structures abruptly transform into mixed AMT-DOPC micelles beyond a certain AMT-DOPC composition. Based on our experimental observations, we suggest that the penetration of drug into the phospholipid bilayer, and subsequent solubilization of the membrane, follows a two-step mechanism with the outer leaflet being removed prior to the inner leaflet.


Subject(s)
Lipid Bilayers , Quartz Crystal Microbalance Techniques , Lipid Bilayers/chemistry , Neutrons , Phospholipids , Silicon Dioxide/chemistry , Solubility
4.
Soft Matter ; 17(33): 7769-7780, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34351343

ABSTRACT

The self-assembly in mixtures of the anionic bile salt surfactant sodium deoxycholate (NaDC) and the zwitterionic phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) in physiological saline solution has been investigated using light scattering, small-angle X-ray scattering and cryo-transmission electron microscopy. Rather small tri-axial ellipsoidal NaDC-DMPC mixed micelles form at a high content of bile salt in the mixture, which increase in size as an increasing amount of DMPC is incorporated into the micelles. Eventually, the micelles begin to grow substantially in length to form long wormlike micelles. At higher mole fractions of DMPC, the samples become turbid and cryo-TEM measurements reveal the existence of large perforated vesicles (stomatosomes), coexisting with geometrically open disks. To our knowledge, stomatosomes have not been observed before for any bile salt-phospholipid system. Mixed micelles are found to be the sole aggregate structure in a very wide regime of bile salt-phospholipid compositions, i.e. up to about 77 mol% phospholipid in the micelles. This is much higher than the corresponding value of 25 mol% observed for the conventional surfactant hexadecyltrimethylammonium bromide (CTAB) mixed with DMPC in the same solvent. The enhanced ability of bile salt surfactants to solubilize phospholipid bilayers and form mixed micelles is rationalized using bending elasticity theory. From our theoretical analysis, we are able to conclude that amphiphilic molecules rank in the following order of increasing spontaneous curvature: phospholipids < conventional surfactants < bile salts. The bending rigidity of the different amphiphilic molecules increases according to the following sequence: bile salts < conventional surfactants < phospholipids.


Subject(s)
Micelles , Phospholipids , Bile Acids and Salts , Deoxycholic Acid , Surface-Active Agents
5.
J Colloid Interface Sci ; 600: 701-710, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34049025

ABSTRACT

HYPOTHESIS: Common amphiphilic drug molecules often have a more rigid nonpolar part than conventional surfactants. The rigidity is expected to influence the self-assembling properties and possibly give rise to aggregation patterns different from that of regular surfactants. EXPERIMENTS: We have investigated self-assembling properties of the hydrochloride salts of adiphenine (ADP), pavatrine (PVT), and amitriptyline (AMT) at concentrations up to 50 wt% using small-angle x-ray scattering, dynamic light scattering, cryo-transmission electron microscopy, and surface tension measurements. FINDINGS: All drugs form small micelles of oblate spheroidal shape at concentrations above the critical micelle concentrations (CMC). The micelles grow weakly in size up to about 20 wt%, where the aggregation number reaches a maximum followed by a slight decrease in size at higher drug concentrations. We observe a correlation between the decrease in micelle size at high concentrations and an increasing charge of the micelles, as the degree of ionization increases with increasing drug concentration and decreasing pH. In contrast to what has previously been reported, the aggregation behavior of all studied drugs resembles the closed association behavior of conventional surfactants with a short aliphatic chain as hydrophobic tail group i.e. the micelles are always small in size and lack a second CMC. CMC values were determined with surface tension measurements, including also lidocaine hydrochloride (LDC) and chlorpromazine hydrochloride (CHL).


Subject(s)
Micelles , Surface-Active Agents , Hydrophobic and Hydrophilic Interactions , Surface Tension , Water
6.
Phys Chem Chem Phys ; 19(41): 28037-28043, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-28994441

ABSTRACT

The structural behavior in aqueous mixtures of negatively charged silver nanoparticles (Ag NPs) together with the cationic surfactants cetyltrimethylammonium bromide (CTAB) and dodecyltrimethylammonium chloride (DTAC), respectively, has been investigated using SANS and SAXS. From our SANS data analysis we are able to conclude that the surfactants self-assemble into micellar clusters surrounding the Ag NPs. We are able to quantify our results by means of fitting experimental SANS data with a model based on cluster formation of micelles with very good agreement. Based on our experimental results, we propose a novel mechanism for the stabilization of negatively charged Ag NPs in a solution of positively charged surfactants in which cluster formation of micelles in the vicinity of the particles prevents the particles from aggregating. Complementary SAXS and DLS measurements further support this novel way of explaining stabilization of small hydrophilic nanoparticles in surfactant-containing solutions.

7.
Br J Anaesth ; 116(2): 208-14, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26577034

ABSTRACT

BACKGROUND: Bleeding remains a severe complication in cardiac surgery. Several studies have found an association between the preoperative plasma concentration of fibrinogen and postoperative bleeding in cardiac surgery patients. This raises the question of whether preoperative supplementation with fibrinogen concentrate can reduce postoperative blood loss. METHODS: An investigator-initiated, prospective, randomized double-blind placebo-controlled study, was performed in 48 low-risk, coronary artery bypass grafting patients. Subjects were randomized to infusion of 2 g fibrinogen or placebo immediately before surgery, after induction of anaesthesia. The primary endpoint was blood loss during the first 12 h postoperatively. Secondary endpoints included the proportion of transfused subjects, the number of transfused allogeneic blood products (red blood cells, plasma and platelets), and haemoglobin concentration after surgery. Student's t-test and Mann-Whitney U-test was used to compare continuous data and χ(2)-test to compare categorical data between groups. RESULTS: Median postoperative bleeding was not significantly different between the fibrinogen and placebo groups [650 (25/75th percentile 500‒835) ml compared with 730 (543‒980) ml, P=0.29]. The proportion of transfused subjects (33 vs 29%, P=0.76), number of perioperative transfusions of allogeneic blood products (0 (0-2 vs 0 (0-3), P=0.76) and haemoglobin concentration 24 h after surgery (107 (sd 11) vs 100 (12) g L-1, P=0.07) were not significantly different between the fibrinogen and placebo group, respectively. CONCLUSION: Preoperative supplementation with 2 g fibrinogen concentrate did not significantly influence postoperative bleeding, in coronary artery bypass grafting patients without documented hypofibrinogenaemia. CLINICAL TRIAL REGISTRATION: NCT 00968045.


Subject(s)
Cardiac Surgical Procedures , Coagulants/therapeutic use , Fibrinogen/therapeutic use , Postoperative Hemorrhage/prevention & control , Preoperative Care/methods , Aged , Aged, 80 and over , Coagulants/administration & dosage , Double-Blind Method , Fibrinogen/administration & dosage , Humans , Middle Aged , Prospective Studies , Treatment Outcome
8.
Eur J Clin Microbiol Infect Dis ; 34(12): 2331-8, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26432552

ABSTRACT

Surgical site infection is a common complication following cardiac surgery. Triclosan-coated sutures have been shown to reduce the rate of infections in various surgical wounds, including wounds after vein harvesting in coronary artery bypass grafting patients. Our purpose was to compare the rate of infections in sternotomy wounds closed with triclosan-coated or conventional sutures. A total of 357 patients that underwent coronary artery bypass grafting were included in a prospective randomized double-blind single-center study. The patients were randomized to closure of the sternal wound with either triclosan-coated sutures (Vicryl Plus and Monocryl Plus, Ethicon, Inc., Somerville, NJ, USA) (n = 179) or identical sutures without triclosan (n = 178). Patients were followed up after 30 days (clinical visit) and 60 days (telephone interview). The primary endpoint was the prevalence of sternal wound infection according to the Centers for Disease Control and Prevention (CDC) criteria. The demographics in both groups were comparable, including age, gender, body mass index, and rate of diabetes and smoking. Sternal wound infection was diagnosed in 43 patients; 23 (12.8%) sutured with triclosan-coated sutures compared to 20 (11.2%) sutured without triclosan (p = 0.640). Most infections were superficial (n = 36, 10.1%), while 7 (2.0%) were deep sternal wound infections. There were 16 positive cultures in the triclosan group and 17 in the non-coated suture group (p = 0.842). The most commonly identified main pathogens were Staphylococcus aureus (45.4%) and coagulase-negative staphylococci (36.4%). Skin closure with triclosan-coated sutures did not reduce the rate of sternal wound infection after coronary artery bypass grafting. (clinicaltrials.gov: NCT01212315).


Subject(s)
Anti-Infective Agents, Local/administration & dosage , Coronary Artery Bypass/adverse effects , Surgical Wound Infection/epidemiology , Surgical Wound Infection/prevention & control , Suture Techniques , Sutures , Triclosan/administration & dosage , Aged , Bacteria/classification , Bacteria/isolation & purification , Double-Blind Method , Female , Humans , Male , Middle Aged , Prevalence , Prospective Studies , Treatment Outcome
9.
Langmuir ; 31(16): 4644-53, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25835031

ABSTRACT

Micelles formed by novel gemini esterquat surfactants have been investigated with small-angle neutron scattering (SANS). The growth behavior of the micelles is found to differ conspicuously depending on the length of the gemini surfactant spacer group. The gemini surfactant with a long spacer form rather small triaxial ellipsoidal tablet-shaped micelles that grow weakly with surfactant concentration in the entire range of measured concentrations. Geminis with a short spacer, on the other hand, form weakly growing oblates or tablets at low concentrations that start to grow much more strongly into polydisperse rodlike or wormlike micelles at higher concentrations. The latter behavior is consistent with the presence of a second CMC that marks the transition from the weakly to the strongly growing regime. It is found that the growth behavior in terms of aggregation number as a function of surfactant concentration always appear concave in weakly growing regimes, while switching to convex behavior in strongly growing regimes. As a result, we are able to determine the second CMC of the geminis with short spacer by means of suggesting a rather precise definition of it, located at the point of inflection of the growth curve that corresponds to the transition from concave to convex growth behavior. Our SANS results are rationalized by comparison with the recently developed general micelle model. In particular, this theory is able to explain and reproduce the characteristic appearances of the experimental growth curves, including the presence of a second CMC and the convex strongly growing regime beyond. By means of optimizing the agreement between predictions from the general micelle model and results from SANS experiments, we are able to determine the three bending elasticity constants spontaneous curvature, bending rigidity, and saddle-splay constant for each surfactant.

10.
J Colloid Interface Sci ; 440: 109-18, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25460696

ABSTRACT

The growth behavior of surfactant micelles has been investigated from a theoretical point of view. It is demonstrated that predictions deduced from the spherocylindrical micelle model, which considers micelles that are only able to grow in the length direction, are inconsistent with experimental measurements. Accordingly, the rise in aggregation numbers above a certain concentration, roughly corresponding to the second critical micelle concentration, appears to be much stronger than predicted by the spherocylindrical micelle model. On the other hand, predictions deduced from the general micelle model, which considers micelles that are able to grow with respect to both width and length, show excellent agreement with experimental observations. The latter theory is based on bending elasticity and it is demonstrated that the associated three parameters spontaneous curvature, bending rigidity and saddle-splay constant may all be determined for a micellar system from experimental measurements of the aggregation number as a function of surfactant concentration. The three parameters turn out to influence the appearance of a micellar growth curve rather differently. In accordance, the location of the second cmc is mainly determined by the saddle-splay constant and the bending rigidity. The shape of the growth curve, when going from the region of weakly growing micelles at low surfactant concentrations to strongly growing micelles above the second cmc, is mainly influenced by the bending rigidity.

11.
Soft Matter ; 10(46): 9362-72, 2014 Dec 14.
Article in English | MEDLINE | ID: mdl-25342439

ABSTRACT

The correlation between the growth behaviour and geometrical shape for CTAB-rich mixed micelles formed by the cationic surfactant hexadecyl trimethyl ammonium bromide (CTAB) and the anionic surfactant sodium octyl sulphate (SOS) has been investigated with small-angle neutron scattering (SANS). Small tablet-shaped micelles formed by CTAB are found to grow only weakly in size with increasing surfactant concentration. The extent of growth becomes increasingly stronger as the fraction of SOS is increased. At higher fractions of SOS, a rather weak growth at low surfactant concentrations is followed by a sharp increase in aggregation numbers beyond a certain surfactant concentration. Such an abrupt transition from weakly to strongly growing micelles has been observed in the past for several micellar systems and is usually referred to as the second critical micelle concentration. The growth behaviour has been rationalized from a theoretical point of view by means of employing the recently developed general micelle model. The theory excellently predicts micellar growth behaviours as well as the observed correlation between the geometrical shape and micellar growth. In accordance, both width and length are found to slightly increase for weakly growing tablet-shaped micelles. On the other hand, strongly growing micelles that are observed above the second cmc display a completely different behaviour, according to which the length increases considerably while the width of the micelles decreases. Most interestingly, by means of optimizing the agreement between the general micelle model and experimentally determined aggregation numbers, we are able to determine the three bending elasticity constants: spontaneous curvature, bending rigidity and saddle-splay constant.

12.
Langmuir ; 30(14): 3928-38, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24697326

ABSTRACT

The influence of adding salt on the self-assembly in sodium octyl sulfate (SOS)-rich mixtures of the anionic surfactant SOS and the cationic surfactant hexadecyltrimethylammonium bromide (CTAB) have been investigated with the two complementary techniques, small-angle neutron scattering (SANS) and cryo-transmission electron microscopy. We are able to conclude that addition of a substantial amount of inert salt, NaBr, mainly has three effects on the structural behaviors: (i) the micelles become much larger at the transition from micelles to bilayers, (ii) the fraction of bilayer disks increases at the expense of vesicles, and (iii) bilayer aggregates perforated with holes are formed in the most diluted samples. A novel form factor valid for perforated bilayer vesicles and disks is introduced for the first time and, as a result, we are able to directly observe the presence of perforated bilayers by means of fitting SANS data with an appropriate model. Moreover, we are able to conclude that the morphology of bilayer aggregates changes according to the following sequence of different bilayer topologies, vesicles → disks → perforated bilayers, as the electrolyte concentration is increased and surfactant mole fraction in the bilayer aggregates approaches equimolarity. We are able to rationalize this sequence of transitions as a result of a monotonous increase of the bilayer saddle-splay constant (k(c)(bi)) with decreasing influence from electrostatics, in agreement with theoretical predictions as deduced from the Poisson-Boltzmann theory.

13.
Langmuir ; 29(38): 11834-48, 2013 Sep 24.
Article in English | MEDLINE | ID: mdl-23984704

ABSTRACT

The self-assembly in SOS-rich mixtures of the anionic surfactant sodium octyl sulfate (SOS) and the cationic surfactant hexadecyltrimethylammonium bromide (CTAB) has been investigated with the complementary techniques small-angle neutron scattering (SANS) and cryo-transmission electron microscopy (cryo-TEM). Both techniques confirm the simultaneous presence of open and closed bilayer structures in highly diluted samples as well as the existence of small globular and large elongated micelles at higher concentrations. However, the two techniques sometimes differ with respect to which type of aggregates is present in a particular sample. In particular, globular or wormlike micelles are sometimes observed with cryo-TEM in the vicinity of the micelle-to-bilayer transition, although only bilayers are present according to SANS and the samples appear bluish to the eye. A similar discrepancy has previously been reported but could not be satisfactorily rationalized. On the basis of our comparison between in situ (SANS) and ex situ (cryo-TEM) experimental techniques, we suggest that this discrepancy appears mainly as a result of the non-negligible amount of surfactant adsorbed at interfaces of the thin sample film created during the cryo-TEM specimen preparation. Moreover, from our detailed SANS data analysis, we are able to observe the unusually high amount of free surfactant monomers present in SOS-rich mixtures of SOS and CTAB, and the experimental results give excellent agreement with model calculations based on the Poisson-Boltzmann mean field theory. Our careful comparison between model calculations and experiments has enabled us to rationalize the dramatic microstructural transformations frequently observed upon simply diluting mixtures of an anionic and a cationic surfactant.

14.
J Colloid Interface Sci ; 381(1): 89-99, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22683217

ABSTRACT

Self-assembly in mixtures of two single-chain cationic surfactants, with different tail lengths (CTAB and DTAB) as well as of a single-chain (DTAB) and a double-chain (DDAB) cationic surfactant, with identical tail lengths, have been investigated with small-angle neutron scattering (SANS) and rationalised in terms of bending elasticity properties. The growth behaviour of micelles with respect to surfactant composition appears completely different in the two surfactant mixtures. DTAB form small oblate spheroidal micelles in presence of [NaBr]=0.1 M that transform into prolate spheroidal mixed CTAB/DTAB micelles upon adding moderate amounts of CTAB, so as to give a mole fraction y=0.20 in solution. Most unexpectedly, upon further addition of CTAB the mixed CTAB/DTAB micelles grow with an almost equal rate in both length and width directions to form tablets. In contrast to this behaviour, mixed DDAB/DTAB micelles grow virtually exclusively in the length direction, in presence of [NaBr]=0.1 M, to form elongated ellipsoidal (tablet-shaped) and subsequently long wormlike micelles as the fraction of DDAB in the micelles increases. Mixed DDAB/DTAB micelles grow to become as long as 2000Å before an abrupt transition to large bilayer structures occurs. This means that the micelles are much longer at the micelle-to-bilayer transition as compared to the same mixture in absence of added salt. It is found that the point of transition from micelles to bilayers is significantly shifted towards higher fractions of aggregated DTAB as an appreciable amount of salt is added to DDAB/DTAB mixtures, indicating a considerable reduction of the spontaneous curvature with an increasing [NaBr]. By means of deducing the various bending elasticity constants from our experimental results, according to a novel approach by ours, we are able to conclude that the different growth behaviours appear as a consequence of a considerably lower bending rigidity, as well as higher saddle-splay constant, for DDAB/DTAB surfactant mixtures in presence of [NaBr]=0.1 M, as compared to mixtures of CTAB/DTAB in [NaBr]=0.1 M and DDAB/DTAB in absence of added salt.

15.
Langmuir ; 28(25): 9311-21, 2012 Jun 26.
Article in English | MEDLINE | ID: mdl-22624499

ABSTRACT

The influence of spacer group on the geometrical shape of micelles formed by quaternary-bis dimeric (Gemini) surfactants C(12)H(25)N(CH(3))(2)(CH(2))(s)N(CH(3))(2)C(12)H(25) (12-s-12) has been investigated with small-angle neutron scattering (SANS). Dimeric surfactants with a short spacer unit (12-3-12 and 12-4-12) are observed to form elongated general ellipsoidal micelles with half axes a < b < c, whereas SANS data demonstrate that 12-s-12 surfactants with 6 ≤ s ≤ 12 form rather small spheroidal micelles rather than strictly spherical micelles. By means of comparing our present SANS results with previously determined growth rates using time-resolved fluorescence quenching, we are able to conclude that micelles formed by 12-6-12, 12-8-12, 12-10-12, and 12-12-12 are shaped as oblate rather than prolate spheroids. As a result, our present investigation suggests a never before reported structural behavior of Gemini surfactant micelles, according to which micelles transform from elongated ellipsoids to nonelongated oblate spheroids as the length of the spacer group is increased. The aggregation number of oblate micelles is observed to monotonously decrease with an increasing length of the surfactant spacer group, mainly as a result of a decreasing minor half axis (a), whereas the major half axis (b) is rather constant with respect to s. We argue that geometrically heterogeneous elongated micelles are formed by dimeric surfactants with a short spacer group mainly as a result of the surface charges becoming less uniformly distributed over the micelle interface. As the length of the spacer group increases, the distance between intramolecular charges become approximately equal to the average distance between charges on the micelle interface, and as a result, rather small oblate spheroidal micelles with a more uniform distribution of surface charges are formed by dimeric 12-s-12 surfactants with 6 ≤ s ≤ 12.

16.
Neuropeptides ; 43(2): 105-11, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19201466

ABSTRACT

The kappa opioid receptor ligand [(3)H]CI-977 was used to autoradiographically determine the density of kappa opioid receptors in the male rat brain following chronic treatment with the anabolic androgenic steroid nandrolone decanoate at two different doses. As compared to controls, significantly lower densities of the kappa opioid receptor were encountered after two weeks of high dose nandrolone decanoate (15 mg/kg) in the nucleus accumbens shell (16%), lateral hypothalamic area (36%), ventromedial hypothalamic nucleus (37%), dorsomedial hypothalamic nucleus (49%), central amygdaloid nucleus, capsular part (28%), lateral globus pallidus (35%) and in the stria terminalis (24%). Furthermore, an up-regulation of the receptor level was observed in the caudate putamen (18%) and in the dorsal endopiriform nucleus (23%). These alterations in the kappa opioid receptor expression are possibly attributed to a previously observed pronounced impact of nandrolone decanoate on the dynorphinergic system and could also include involvement of the dopaminergic reward system.


Subject(s)
Anabolic Agents/pharmacology , Brain Chemistry/drug effects , Nandrolone/analogs & derivatives , Receptors, Opioid, kappa/biosynthesis , Animals , Autoradiography , Dopamine/metabolism , Dose-Response Relationship, Drug , Dynorphins/metabolism , Male , Nandrolone/administration & dosage , Nandrolone/pharmacology , Nandrolone Decanoate , Rats , Rats, Sprague-Dawley
17.
Langmuir ; 25(4): 1949-60, 2009 Feb 17.
Article in English | MEDLINE | ID: mdl-19199752

ABSTRACT

A novel approach to evaluate the bending elasticity of monolayers formed by nonionic surfactants with a rigid head group is introduced by means of considering head group repulsion as derived from the free energy of mixing rigid hydrophilic head groups with surrounding solvent molecules as well as contributions related to the hydrophobic tails. Explicit expressions for the spontaneous curvature (H0), bending rigidity (kc) and saddle-splay constant (kc) have been derived for the constraint of constant chemical potential of free surfactant (thermodynamically open layers) as well as the constraint of constant aggregation number (thermodynamically closed layers). Most interestingly, it is demonstrated that kc for thermodynamically open layers formed by a nonionic surfactant with rigid tail and head group always must be zero. However, kc for surfactants with a flexible tail as a function of the head group-to-tail volume ratio is found to go through a maximum at some large, positive value of kc and H0 approximately 0. Eventually, kc falls below zero as the head group volume increases above a certain value. Hence, we may conclude that nonionic surfactants with a rigid head group may form thermodynamically stable fluid layers or aggregates only insofar the hydrophobic part is flexible with respect to chain conformational degrees of freedom and the head group is not too voluminous. It is found that the head group repulsion contribution to kcH0 is always positive whereas the corresponding contribution to kc may be positive or negative depending on whether the hydrophobic layer of the film is thicker or thinner than the hydrophilic layer.

18.
Chem Commun (Camb) ; (34): 3959-79, 2008 Sep 14.
Article in English | MEDLINE | ID: mdl-18758598

ABSTRACT

Chemical Ecology is a new interdisciplinary research area with close collaborations between chemists and biologists of different descriptions. It has developed during the last 40 years because of an interest in the structure, function and evolution of chemical signalling among organisms and also because of the hope to be able to use the ubiquitous phenomenon to control organisms, like pest insects. This feature article highlights the growth of the discipline and the progress made, through examples from the author's own work on chemical communication in insects and flowering plants. The research deals with olfactory signals, i.e. volatile chemical compounds perceived by the sense of smell. Analytical techniques and methods are an important part of the work.


Subject(s)
Animal Communication , Bees/physiology , Behavior, Animal , Flowers/chemistry , Olfactory Receptor Neurons/physiology , Organic Chemicals/analysis , Smell/physiology , Animals , Chromatography, Gas , Exocrine Glands/chemistry , Exocrine Glands/metabolism , Female , Male , Organic Chemicals/chemistry , Plant Extracts/analysis , Plant Extracts/chemistry , Signal Transduction/physiology , Volatilization
19.
J Colloid Interface Sci ; 327(1): 191-7, 2008 Nov 01.
Article in English | MEDLINE | ID: mdl-18771780

ABSTRACT

The self-assembly of surfactants forming toruslike or toroidal micelles has been investigated from a theoretical point of view, in particular the structural behaviour and stability of tori in terms of the three bending elasticity constants spontaneous curvature (H(0)), bending rigidity (k(c)) and saddle-splay constant (k(c)). It is demonstrated that the size of toruslike micelles increases with an increasing bending rigidity, but is independent of both spontaneous curvature and saddle-splay constant. Similar to conventional micelles, toruslike micelles are found to be stable over bilayers as the spontaneous curvature times the surfactant layer thickness exceeds 1/4. Moreover, it is shown that toruslike micelles, in general, are favoured at the expense of long spherocylindrical micelles as a result of elimination of the unfavourable end-caps. However, conventional micelles that are able to grow with respect to both width and length (tablets) may be stable over tori as well as spheres in much wider regimes of different bending elasticity constants. As a result, toruslike micelles are predicted to be stable over conventional micelles, including rods, at large values of the effective bending constant k(eff) identical with 2k(c)+k(c), i.e. in the same region where infinite cylinders are expected to be observed. This result is consistent with the fact that toruslike micelles have usually been observed to coexist with large networks of branched cylinders.


Subject(s)
Micelles , Thermodynamics , Elasticity , Macromolecular Substances/chemistry , Molecular Conformation
20.
J Colloid Interface Sci ; 322(2): 589-95, 2008 Jun 15.
Article in English | MEDLINE | ID: mdl-18387619

ABSTRACT

Critical micelle concentrations in mixtures of an anionic surfactant and a cationic amphiphilic drug have been investigated using a model-independent procedure to quantify observed synergistic effects. Experimental results were compared with a theory based on the Poisson-Boltzmann mean field approximation of a charged interface with a diffuse layer of counterions. Explicit expressions for the activity coefficients from which the critical micelle concentration can be calculated and quantitatively predicted have been derived and excellent agreement between experimental data and theory was obtained. As a result, we demonstrate that it is possible to rationalize and predict the magnitude of synergism in mixtures of oppositely charged surfactants in the presence of added salt.


Subject(s)
Surface-Active Agents/chemistry , Anions , Cations , Electrochemistry , Micelles , Models, Chemical , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...