Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
NPJ Vaccines ; 8(1): 149, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37794010

ABSTRACT

COVID-19 vaccines were originally designed based on the ancestral Spike protein, but immune escape of emergent Variants of Concern (VOC) jeopardized their efficacy, warranting variant-proof vaccines. Here, we used preclinical rodent models to establish the cross-protective and cross-neutralizing capacity of adenoviral-vectored vaccines expressing VOC-matched Spike. CoroVaxG.3-D.FR, matched to Delta Plus Spike, displayed the highest levels of nAb to the matched VOC and mismatched variants. Cross-protection against viral infection in aged K18-hACE2 mice showed dramatic differences among the different vaccines. While Delta-targeted vaccines fully protected mice from a challenge with Gamma, a Gamma-based vaccine offered only partial protection to Delta challenge. Administration of CorovaxG.3-D.FR in a prime/boost regimen showed that a booster was able to increase the neutralizing capacity of the sera against all variants and fully protect aged K18-hACE2 mice against Omicron BA.1, as a BA.1-targeted vaccine did. The neutralizing capacity of the sera diminished in all cases against Omicron BA.2 and BA.5. Altogether, the data demonstrate that a booster with a vaccine based on an antigenically distant variant, such as Delta or BA.1, has the potential to protect from a wider range of SARS-CoV-2 lineages, although careful surveillance of breakthrough infections will help to evaluate combination vaccines targeting antigenically divergent variants yet to emerge.

2.
Vaccines (Basel) ; 9(10)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34696219

ABSTRACT

Most approved vaccines against COVID-19 have to be administered in a prime/boost regimen. We engineered a novel vaccine based on a chimeric human adenovirus 5 (hAdV5) vector. The vaccine (named CoroVaxG.3) is based on three pillars: (i) high expression of Spike to enhance its immunodominance by using a potent promoter and an mRNA stabilizer; (ii) enhanced infection of muscle and dendritic cells by replacing the fiber knob domain of hAdV5 by hAdV3; (iii) use of Spike stabilized in a prefusion conformation. The transduction with CoroVaxG.3-expressing Spike (D614G) dramatically enhanced the Spike expression in human muscle cells, monocytes and dendritic cells compared to CoroVaxG.5 that expressed the native fiber knob domain. A single dose of CoroVaxG.3 induced a potent humoral immunity with a balanced Th1/Th2 ratio and potent T-cell immunity, both lasting for at least 5 months. Sera from CoroVaxG.3-vaccinated mice was able to neutralize pseudoviruses expressing B.1 (wild type D614G), B.1.117 (alpha), P.1 (gamma) and B.1.617.2 (delta) Spikes, as well as an authentic P.1 SARS-CoV-2 isolate. Neutralizing antibodies did not wane even after 5 months, making this kind of vaccine a likely candidate to enter clinical trials.

3.
Medicina (B Aires) ; 80 Suppl 3: 1-6, 2020.
Article in English | MEDLINE | ID: mdl-32658841

ABSTRACT

The disease named COVID-19, caused by the SARS-CoV-2 coronavirus, is currently generating a global pandemic. Vaccine development is no doubt the best long-term immunological approach, but in the current epidemiologic and health emergency there is a need for rapid and effective solutions. Convalescent plasma is the only antibody-based therapy available for COVID-19 patients to date. Equine polyclonal antibodies (EpAbs) put forward a sound alternative. The new generation of processed and purified EpAbs containing highly purified F(ab')2 fragments demonstrated to be safe and well tolerated. EpAbs are easy to manufacture allowing a fast development and scaling up for a treatment. Based on these ideas, we present a new therapeutic product obtained after immunization of horses with the receptor-binding domain of the viral Spike glycoprotein. Our product shows around 50 times more potency in in vitro seroneutralization assays than the average of convalescent plasma. This result may allow us to test the safety and efficacy of this product in a phase 2/3 clinical trial to be conducted in July 2020 in the metropolitan area of Buenos Aires, Argentina.


La enfermedad denominada COVID-19 es causada por el coronavirus SARS-CoV-2 y es actualmente considerada una pandemia a nivel global. El desarrollo de vacunas es sin duda la mejor estrategia a largo plazo, pero debido a la emergencia sanitaria, existe una necesidad urgente de encontrar soluciones rápidas y efectivas para el tratamiento de la enfermedad. Hasta la fecha, el uso de plasma de convalecientes es la única inmunoterapia disponible para pacientes hospitalizados con COVID-19. El uso de anticuerpos policlonales equinos (EpAbs) es otra alternativa terapéutica interesante. La nueva generación de EpAbs incluyen el procesamiento y purificación de los mismos y la obtención de fragmentos F(ab')2 con alta pureza y un excelente perfil de seguridad en humanos. Los EpAbs son fáciles de producir, lo cual permite el desarrollo rápido y la elaboración a gran escala de un producto terapéutico. En este trabajo mostramos el desarrollo de un suero terapéutico obtenido luego de la inmunización de caballos utilizando el receptor-binding domain de la glicoproteína Spike del virus. Nuestro producto mostró ser alrededor de 50 veces más potente en ensayos de seroneutralización in vitro que el promedio de los plasmas de convalecientes. Estos resultados nos permitirían testear la seguridad y eficacia de nuestro producto en ensayos clínicos de fase 2/3 a realizarse a partir de julio de 2020 en la zona metropolitana de Buenos Aires, Argentina.


Subject(s)
Antibodies, Viral , Coronavirus Infections/therapy , Immune Sera/immunology , Immunoglobulin Fab Fragments/isolation & purification , Immunoglobulin G/isolation & purification , Pandemics , Pneumonia, Viral , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antibodies, Viral/isolation & purification , Argentina , Betacoronavirus , COVID-19 , Horses , Humans , Immunization, Passive , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin G/chemistry , Neutralization Tests , SARS-CoV-2 , COVID-19 Serotherapy
4.
Medicina (B.Aires) ; 80(supl.3): 1-6, June 2020. ilus, graf, tab
Article in English | LILACS | ID: biblio-1135184

ABSTRACT

The disease named COVID-19, caused by the SARS-CoV-2 coronavirus, is currently generating a global pandemic. Vaccine development is no doubt the best long-term immunological approach, but in the current epidemiologic and health emergency there is a need for rapid and effective solutions. Convalescent plasma is the only antibody-based therapy available for COVID-19 patients to date. Equine polyclonal antibodies (EpAbs) put forward a sound alternative. The new generation of processed and purified EpAbs containing highly purified F(ab’)2 fragments demonstrated to be safe and well tolerated. EpAbs are easy to manufacture allowing a fast development and scaling up for a treatment. Based on these ideas, we present a new therapeutic product obtained after immunization of horses with the receptor-binding domain of the viral Spike glycoprotein. Our product shows around 50 times more potency in in vitro seroneutralization assays than the average of convalescent plasma. This result may allow us to test the safety and efficacy of this product in a phase 2/3 clinical trial to be conducted in July 2020 in the metropolitan area of Buenos Aires, Argentina.


La enfermedad denominada COVID-19 es causada por el coronavirus SARS-CoV-2 y es actualmente considerada una pandemia a nivel global. El desarrollo de vacunas es sin duda la mejor estrategia a largo plazo, pero debido a la emergencia sanitaria, existe una necesidad urgente de encontrar soluciones rápidas y efectivas para el tratamiento de la enfermedad. Hasta la fecha, el uso de plasma de convalecientes es la única inmunoterapia disponible para pacientes hospitalizados con COVID-19. El uso de anticuerpos policlonales equinos (EpAbs) es otra alternativa terapéutica interesante. La nueva generación de EpAbs incluyen el procesamiento y purificación de los mismos y la obtención de fragmentos F(ab’)2 con alta pureza y un excelente perfil de seguridad en humanos. Los EpAbs son fáciles de producir, lo cual permite el desarrollo rápido y la elaboración a gran escala de un producto terapéutico. En este trabajo mostramos el desarrollo de un suero terapéutico obtenido luego de la inmunización de caballos utilizando el receptor-binding domain de la glicoproteína Spike del virus. Nuestro producto mostró ser alrededor de 50 veces más potente en ensayos de seroneutralización in vitro que el promedio de los plasmas de convalecientes. Estos resultados nos permitirían testear la seguridad y eficacia de nuestro producto en ensayos clínicos de fase 2/3 a realizarse a partir de julio de 2020 en la zona metropolitana de Buenos Aires, Argentina.


Subject(s)
Humans , Animals , Immunoglobulin Fab Fragments/isolation & purification , Coronavirus Infections/therapy , Immune Sera/immunology , Antibodies, Viral/isolation & purification , Antibodies, Viral/immunology , Antibodies, Viral/chemistry , Argentina , Immunoglobulin G/isolation & purification , Immunoglobulin G/chemistry , Immunoglobulin Fab Fragments/chemistry , Neutralization Tests , Pandemics , Betacoronavirus , SARS-CoV-2 , COVID-19 , Horses
5.
Nanoscale Adv ; 1(5): 1833-1846, 2019 May 15.
Article in English | MEDLINE | ID: mdl-36134238

ABSTRACT

Engineering oligomeric protein self-assembly is an attractive approach to fabricate nanostructures with well-defined geometries, stoichiometry and functions. The homodecamer Brucella Lumazine Synthase (BLS) is a highly stable and immunogenic protein nanoparticle (PNP). Here, we engineered the BLS protein scaffold to display two functions in spatially opposite regions of its structure yielding a Janus-like nanoparticle. An in silico analysis of the BLS head-to-head dimer of homopentamers shows major inter-pentameric interactions located in the equatorial interface. Based on this analysis, two BLS protomer variants were designed to interrupt pentamer self-dimerization and promote heteropentameric dimers. This strategy enabled us to generate a decameric particle with two distinct sides formed by two independent pentamers. The versatility of this new self-assembly nanofabrication strategy is illustrated with two example applications. First, a bifunctional BLS bearing Alexa Fluor 488 fluorophores on one side and sialic acid binding domains on the other side was used for labelling murine and human cells and analyzed by flow cytometry and confocal microscopy. Second, multichromophoric FRET nanoparticles were fabricated and characterized at the single molecule level, showing discrete energy transfer events. The engineered BLS variants constitute a general platform for displaying two functions in a controlled manner within the same PNP with potential applications in various areas such as biomedicine, biotechnology and nanotechnology.

6.
Clin Cancer Res ; 23(17): 5135-5148, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28512172

ABSTRACT

Purpose: Conditioning strategies constitute a relatively unexplored and exciting opportunity to shape tumor fate by targeting the tumor microenvironment. In this study, we assessed how hemin, a pharmacologic inducer of heme oxygenase-1 (HO-1), has an impact on prostate cancer development in an in vivo conditioning model.Experimental Design: The stroma of C57BL/6 mice was conditioned by subcutaneous administration of hemin prior to TRAMP-C1 tumor challenge. Complementary in vitro and in vivo assays were performed to evaluate hemin effect on both angiogenesis and the immune response. To gain clinical insight, we used prostate cancer patient-derived samples in our studies to assess the expression of HO-1 and other relevant genes.Results: Conditioning resulted in increased tumor latency and decreased initial growth rate. Histologic analysis of tumors grown in conditioned mice revealed impaired vascularization. Hemin-treated human umbilical vein endothelial cells (HUVEC) exhibited decreased tubulogenesis in vitro only in the presence of TRAMP-C1-conditioned media. Subcutaneous hemin conditioning hindered tumor-associated neovascularization in an in vivo Matrigel plug assay. In addition, hemin boosted CD8+ T-cell proliferation and degranulation in vitro and antigen-specific cytotoxicity in vivo A significant systemic increase in CD8+ T-cell frequency was observed in preconditioned tumor-bearing mice. Tumors from hemin-conditioned mice showed reduced expression of galectin-1 (Gal-1), key modulator of tumor angiogenesis and immunity, evidencing persistent remodeling of the microenvironment. We also found a subset of prostate cancer patient-derived xenografts and prostate cancer patient samples with mild HO-1 and low Gal-1 expression levels.Conclusions: These results highlight a novel function of a human-used drug as a means of boosting the antitumor response. Clin Cancer Res; 23(17); 5135-48. ©2017 AACR.


Subject(s)
Galectin 1/genetics , Heme Oxygenase-1/genetics , Hemin/administration & dosage , Prostatic Neoplasms/drug therapy , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/pathology , Cell Proliferation/drug effects , Disease Models, Animal , Galectin 1/antagonists & inhibitors , Gene Expression Regulation, Neoplastic/drug effects , Heme Oxygenase-1/antagonists & inhibitors , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Male , Mice , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Xenograft Model Antitumor Assays
7.
Sci Rep ; 6: 36646, 2016 11 18.
Article in English | MEDLINE | ID: mdl-27857212

ABSTRACT

Dendritic cells (DC) initiate the adaptive immune response. Glucocorticoids (GCs) down-modulate the function of DC. Compound A (CpdA, (2-(4-acetoxyphenyl)-2-chloro-N-methyl-ethylammonium chloride) is a plant-derived GR-ligand with marked dissociative properties. We investigated the effects of CpdA on in vitro generated GM-CSF-conditioned bone marrow-derived DC (BMDC). CpdA-exposed BMDC exhibited low expression of cell-surface molecules and diminution of the release of proinflammatory cytokines upon LPS stimulation; processes associated with BMDC maturation and activation. CpdA-treated BMDC were inefficient at Ag capture via mannose receptor-mediated endocytosis and displayed reduced T-cell priming. CpdA prevented the LPS-induced rise in pErk1/2 and pP38, kinases involved in TLR4 signaling. CpdA fully inhibited LPS-induced pAktSer473, a marker associated with the generation of tolerogenic DC. We used pharmacological blockade and selective genetic loss-of-function tools and demonstrated GR-independent inhibitory effects of CpdA in BMDC. Mechanistically, CpdA-mediated inactivation of the NF-κB intracellular signaling pathway was associated with a short-circuiting of pErk1/2 and pP38 upstream signaling. Assessment of the in vivo function of CpdA-treated BMDC pulsed with the hapten trinitrobenzenesulfonic acid showed impaired cell-mediated contact hypersensitivity. Collectively, we provide evidence that CpdA is an effective BMDC modulator that might have a benefit for immune disorders, even when GR is not directly targeted.


Subject(s)
Acetates/pharmacology , Bone Marrow Cells/drug effects , Dendritic Cells/drug effects , Down-Regulation , Granulocyte-Macrophage Colony-Stimulating Factor/physiology , Receptors, Glucocorticoid/drug effects , Receptors, Glucocorticoid/metabolism , Tyramine/analogs & derivatives , Animals , B7-1 Antigen/metabolism , Bone Marrow Cells/cytology , Dendritic Cells/cytology , Endocytosis/drug effects , Inflammation Mediators/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Mice , Toll-Like Receptor 4/drug effects , Toll-Like Receptor 4/metabolism , Tyramine/pharmacology , Up-Regulation/drug effects
8.
J Immunol ; 196(10): 4014-29, 2016 05 15.
Article in English | MEDLINE | ID: mdl-27084100

ABSTRACT

In this study, we demonstrate that the unlipidated (U) outer membrane protein (Omp) 19 from Brucella spp. is a competitive inhibitor of human cathepsin L. U-Omp19 inhibits lysosome cathepsins and APC-derived microsome activity in vitro and partially inhibits lysosomal cathepsin L activity within live APCs. Codelivery of U-Omp19 with the Ag can reduce intracellular Ag digestion and increases Ag half-life in dendritic cells (DCs). U-Omp19 retains the Ag in Lamp-2(+) compartments after its internalization and promotes a sustained expression of MHC class I/peptide complexes in the cell surface of DCs. Consequently, U-Omp19 enhances Ag cross-presentation by DCs to CD8(+) T cells. U-Omp19 s.c. delivery induces the recruitment of CD11c(+)CD8α(+) DCs and monocytes to lymph nodes whereas it partially limits in vivo Ag proteolysis inside DCs. Accordingly, this protein is able to induce CD8(+) T cell responses in vivo against codelivered Ag. Antitumor responses were elicited after U-Omp19 coadministration, increasing survival of mice in a murine melanoma challenge model. Collectively, these results indicate that a cysteine protease inhibitor from bacterial origin could be a suitable component of vaccine formulations against tumors.


Subject(s)
Antigens, Bacterial/metabolism , Bacterial Outer Membrane Proteins/metabolism , Brucella/immunology , Brucellosis/immunology , CD8-Positive T-Lymphocytes/physiology , Cancer Vaccines/immunology , Cathepsins/metabolism , Dendritic Cells/immunology , Immunotherapy/methods , Lipoproteins/metabolism , Lysosomes/metabolism , Melanoma/therapy , Animals , Antigens, Neoplasm/immunology , Cross-Priming , Female , Lymphocyte Activation , Lysosomal-Associated Membrane Protein 2/metabolism , Melanoma/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic
9.
J Mol Biol ; 428(6): 1165-1179, 2016 Mar 27.
Article in English | MEDLINE | ID: mdl-26851072

ABSTRACT

In response to light, as part of a two-component system, the Brucella blue light-activated histidine kinase (LOV-HK) increases its autophosphorylation, modulating the virulence of this microorganism. The Brucella histidine kinase (HK) domain belongs to the HWE family, for which there is no structural information. The HWE family is exclusively present in proteobacteria and usually coupled to a wide diversity of light sensor domains. This work reports the crystal structure of the Brucella HK domain, which presents two different dimeric assemblies in the asymmetric unit: one similar to the already described canonical parallel homodimers (C) and the other, an antiparallel non-canonical (NC) dimer, each with distinct relative subdomain orientations and dimerization interfaces. Contrary to these crystallographic structures and unlike other HKs, in solution, the Brucella HK domain is monomeric and still active, showing an astonishing instability of the dimeric interface. Despite this instability, using cross-linking experiments, we show that the C dimer is the functionally relevant species. Mutational analysis demonstrates that the autophosphorylation activity occurs in cis. The different relative subdomain orientations observed for the NC and C states highlight the large conformational flexibility of the HK domain. Through the analysis of these alternative conformations by means of molecular dynamics simulations, we also propose a catalytic mechanism for Brucella LOV-HK.


Subject(s)
Brucella/enzymology , Protein Kinases/chemistry , Protein Kinases/metabolism , Protein Processing, Post-Translational , Crystallography, X-Ray , DNA Mutational Analysis , Histidine Kinase , Molecular Dynamics Simulation , Phosphorylation , Protein Conformation , Protein Kinases/genetics , Protein Multimerization
10.
PLoS One ; 10(5): e0126827, 2015.
Article in English | MEDLINE | ID: mdl-25973756

ABSTRACT

Brucella Lumazine Synthase (BLS) is a highly immunogenic decameric protein which can accept the fusion of foreign proteins at its ten N-termini. These chimeras are very efficient to elicit systemic and oral immunity without adjuvants. BLS signaling via Toll-Like Receptor 4 (TLR4) regulates innate and adaptive immune responses, inducing dendritic cell maturation and CD8(+) T-cell cytotoxicity. In this work we study the effect induced by BLS in TLR4-expressing B16 melanoma. In order to evaluate the effectiveness of BLS as a preventive vaccine, C57BL/6J mice were immunized with BLS or BLS-OVA, and 35 days later were subcutaneously inoculated with B16-OVA melanoma. BLS or BLS-OVA induced a significant inhibition of tumor growth, and 50% of mice immunized with the highest dose of BLS did not develop visible tumors. This effect was not observed in TLR4-deficient mice. For treatment experiments, mice were injected with BLS or BLS-OVA 2 days after the inoculation of B16 cells. Both treatments induced significant and equal tumor growth delay and increased survival. Moreover, BLS and BLS-OVA stimulation were also effective in TLR4-deficient mice. In order to study whether BLS has a direct effect on tumor cells, B16 cells were preincubated with BLS, and after 48h, cells were inoculated. Tumors induced by BLS-stimulated cells had inhibited growth and survival was increased. In the BLS group, 40% of mice did not develop tumors. This effect was abolished by the addition of TLR4/MD2 blocking antibody to cells before BLS stimulation. Our work demonstrates that BLS immunization induces a preventive antitumor response that depends on mice TLR4. We also show that BLS generates a therapeutic effect in mice inoculated with B16 cells. Our results show that BLS acts directly in cultured tumor cells via TLR4, highly suggesting that BLS elicits its therapeutic effects acting on the TLR4 from B16 melanoma cells.


Subject(s)
Brucella/enzymology , Multienzyme Complexes/metabolism , Toll-Like Receptor 4/genetics , Animals , Apoptosis , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Melanoma, Experimental/drug therapy , Melanoma, Experimental/mortality , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Multienzyme Complexes/genetics , Multienzyme Complexes/immunology , Ovalbumin/genetics , Ovalbumin/metabolism , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/therapeutic use , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , Recombinant Proteins/therapeutic use , Survival Rate , Toll-Like Receptor 4/deficiency , Toll-Like Receptor 4/metabolism , Transplantation, Homologous
11.
PLoS One ; 7(9): e45705, 2012.
Article in English | MEDLINE | ID: mdl-23029192

ABSTRACT

Lumazine synthase from Brucella spp. (BLS) is a highly immunogenic decameric protein. It is possible to insert foreign peptides or proteins at its ten-amino acid termini. These chimeras elicit systemic and oral immunity without adjuvants, which are commonly needed in the formulation of subunit-based vaccines. Here, we show that BLS induces the cross presentation of a covalently attached peptide OVA(257-264) and a specific cytotoxic response to this peptide in the absence of adjuvants. Unlike other subunit-based vaccines, this chimera induces rapid activation of CTLs and a specific cytotoxic response, making this polymeric protein an ideal antigen carrier for vaccine development. Adoptive transfer of transgenic OT-I T cells revealed efficient cross presentation of BLS-OVA(257-264)in vivo. BLS-OVA(257-264) immunization induced the proliferation of OVA(257-264)-specific CD8+ lymphocytes and also increased the percentage of OVA(257-264)-specific CD8+ cells expressing the early activation marker CD69; after 5 days, the percentage of OVA(257-264)-specific CD8+ cells expressing high levels of CD44 increased. This cell subpopulation showed decreased expression of IL-7Rα, indicating that BLS-OVA(257-264) induced the generation of CD8+ effector cells. BLS-OVA(257-264) was cross presented in vitro independently of the presence of a functional TLR4 in the DCs. Finally, we show that immunization of wild type mice with the chimera BLS-OVA(257-264) without adjuvants induced a strong OVA(257-264)-specific effector cytotoxic response. This cytotoxicity is dependent on TLR4 as is not induced in mice lacking a functional receptor. These data show that TLR4 signaling is necessary for the induction of a cytotoxic response but not for antigen cross presentation.


Subject(s)
Cytotoxicity, Immunologic/immunology , Multienzyme Complexes/immunology , Toll-Like Receptor 4/physiology , Adjuvants, Immunologic/pharmacology , Animals , Biopolymers , CD8-Positive T-Lymphocytes/immunology , Cross-Priming/immunology , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Fluorescent Dyes , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Ovalbumin/immunology , Polymerase Chain Reaction
12.
PLoS One ; 5(12): e15694, 2010 Dec 22.
Article in English | MEDLINE | ID: mdl-21203530

ABSTRACT

Superantigens bind to major histocompatibility complex class II molecules and interact with T cells expressing a particular T cell receptor Vß inducing a strong proliferation/deletion response of the superantigen-reactive T cells. However, there have been no attempts to investigate the ability of Sags to induce apoptosis in neoplastic T cells by signaling through the Vß region of their TCR. In the present study we show that bacterial and MMTV-encoded superantigens induce the apoptosis of AKR/J cognate lymphoma T cells both in vitro and in vivo. The Fas-Fas-L pathway was shown to be involved in the apoptosis of lymphoma T cells induced by bacterial superantigens. In vivo exposure to bacterial superantigens was able to improve the survival of lymphoma bearing mice. Moreover, the permanent expression of a retroviral encoded superantigen induced the complete remission of an aggressive lymphoma in a high percentage of mice. The possibility of a therapeutic use of superantigens in lymphoma/leukemia T cell malignancies is discussed.


Subject(s)
Apoptosis , Lymphoma, T-Cell/genetics , Lymphoma, T-Cell/immunology , Superantigens/metabolism , Animals , Antibodies, Monoclonal/chemistry , Cell Survival , Coculture Techniques , Fas Ligand Protein/biosynthesis , Female , Flow Cytometry/methods , Humans , Male , Mammary Tumor Virus, Mouse/immunology , Mice , Receptors, Antigen, T-Cell/metabolism , fas Receptor/biosynthesis
13.
J Immunol ; 176(4): 2366-72, 2006 Feb 15.
Article in English | MEDLINE | ID: mdl-16455994

ABSTRACT

The enzyme lumazine synthase from Brucella spp. (BLS) is a highly immunogenic protein that folds as a stable dimer of pentamers. It is possible to insert foreign peptides and proteins at the 10 N terminus of BLS without disrupting its general folding, and these chimeras are very efficient to elicit systemic and oral immunity without adjuvants. In this study, we show that BLS stimulates bone marrow dendritic cells from mice in vitro to up-regulate the levels of costimulatory molecules (CD40, CD80, and CD86) and major histocompatibility class II Ag. Furthermore, the mRNA levels of several chemokines are increased, and proinflammatory cytokine secretion is induced upon exposure to BLS. In vivo, BLS increases the number of dendritic cells and their expression of CD62L in the draining lymph node. All of the observed effects are dependent on TLR4, and clearly independent of LPS contamination. The described characteristics of BLS make this protein an excellent candidate for vaccine development.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/immunology , Biopolymers/immunology , Dendritic Cells/immunology , Toll-Like Receptor 4/immunology , Animals , Antigens, CD/metabolism , Biopolymers/chemistry , Bone Marrow Cells/cytology , Bone Marrow Cells/immunology , Bone Marrow Cells/metabolism , Brucella/immunology , Cell Differentiation , Cell Movement , Cells, Cultured , Cytokines/biosynthesis , Dendritic Cells/cytology , Dendritic Cells/metabolism , Lymph Nodes/cytology , Lymph Nodes/immunology , Lymph Nodes/metabolism , Mice , Toll-Like Receptor 2/deficiency , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/immunology , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/deficiency , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...