Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Results Phys ; 23: 103968, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33654656

ABSTRACT

The current work is of interest to introduce a detailed analysis of the novel fractional COVID-19 model. Non-local fractional operators are one of the most efficient tools in order to understand the dynamics of the disease spread. For this purpose, we intend as an attempt at investigating the fractional COVID-19 model through Caputo operator with order χ ∈ ( 0 , 1 ) . Employing the fixed point theorem, it is shown that the solutions of the proposed fractional model are determined to satisfy the existence and uniqueness conditions under the Caputo derivative. On the other hand, its iterative solutions are indicated by making use of the Laplace transform of the Caputo fractional operator. Also, we establish the stability criteria for the fractional COVID-19 model via the fixed point theorem. The invariant region in which all solutions of the fractional model under investigation are positive is determined as the non-negative hyperoctant R + 7 . Moreover, we perform the parameter estimation of the COVID-19 model by utilizing the non-linear least squares curve fitting method. The sensitivity analysis of the basic reproduction number R 0 c is carried out to determine the effects of the proposed fractional model's parameters on the spread of the disease. Numerical simulations show that all results are in good agreement with real data and all theoretical calculations about the disease.

2.
Results Phys ; 22: 103853, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33532177

ABSTRACT

The epidemic of the coronavirus disease 2019 (COVID-19) has been rising rapidly and life-threatening worldwide since its inception. The lack of an established vaccine for this disease has caused millions of illnesses and hundreds of thousands of deaths globally. Mathematical models have become crucial tools in determining the potential and seriousness of the disease and in helping the types of strategic intervention measures to be taken to prevent and control the intensity of the spread of the disease. In this study, a compartmental epidemic model of COVID-19 is proposed and analyzed to predict the transmission dynamics of the disease in Ethiopia. Analytically, the basic reproduction number is determined. To observe the dynamics of the system, a detailed stability analysis of the disease-free equilibrium (DFE) of the proposed model is carried out. Our result shows that the DFE is stable if the basic reproduction number is less than unity and unstable otherwise. Also, the parameters of the assumed model are estimated using the actual data of COVID-19 from Ethiopia reported for three months between March and June 2020. Furthermore, we performed a sensitivity analysis of the basic reproductive number and found that reducing the rate of transmission is the most important factor in achieving disease control. Numerical simulations demonstrate the suitability of the proposed model for the actual COVID-19 data in Ethiopia. In particular, the numerical simulation shows an increase in the rate of transmission leads to a significant increase in the infected individuals. Thus, results of the numerical simulations are in agreement with the sensitivity results of the system. The possible implication of this is that declining the rate of transmission to the desired level could enable us to combat the disease. Numerical simulations are also performed to forecast the disease prevalence in the community.

3.
Nonlinear Dyn ; 103(1): 925-946, 2021.
Article in English | MEDLINE | ID: mdl-33437129

ABSTRACT

In this study, a new SIVS epidemic model for human papillomavirus (HPV) is proposed. The global dynamics of the proposed model are analyzed under pulse vaccination for the susceptible unvaccinated females and males. The threshold value for the disease-free periodic solution is obtained using the comparison theory for ordinary differential equations. It is demonstrated that the disease-free periodic solution is globally stable if the reproduction number is less than unity under some defined parameters. Moreover, we found the critical value of the pulse vaccination for susceptible females needed to control the HPV. The uniform persistence of the disease for some parameter values is also analyzed. The numerical simulations conducted agreed with the theoretical findings. It is found out using numerical simulation that the pulse vaccination has a good impact on reducing the disease.

4.
Biosystems ; 190: 104102, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32035935

ABSTRACT

Measles is an awfully contagious acute viral infection. It can be fatal, causing cough, red eyes, followed by a fever and skin rash with signs of respiratory infection. In this paper, we propose and analyze a model describing the transmission dynamics of a measles epidemic in the human population using the stability theory of differential equations. The model proposed undergoes a backward bifurcation for some parameter values. Sensitivity analysis is carried out on the model parameters in order to determine their impact on the disease dynamics. We extend the model to an optimal control problem by including time-dependent control variables: prevention, treatment of infected people and vaccination of the susceptible humans. In an attempt to minimize the infected people and the cost applied we design the cost functional. Next, we show that optimal control exists for the system, and the Pontryagin maximum principle is employed to characterize the continuous controls. Numerical simulation is performed to justify the analytical results and discussed quantitatively.


Subject(s)
Computer Simulation , Epidemics , Measles/prevention & control , Measles/therapy , Algorithms , Basic Reproduction Number , Disease Susceptibility , Humans , Measles Vaccine , Models, Biological , Public Health Informatics , Reproducibility of Results , Stochastic Processes , Vaccination
5.
J Biol Dyn ; 13(1): 192-217, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30843764

ABSTRACT

In this paper, the dysentery dynamics model with controls is theoretically investigated using the stability theory of differential equations. The system is considered as SIRSB deterministic compartmental model with treatment and sanitation. A threshold number R0 is obtained such that R0≤ 1 indicates the possibility of dysentery eradication in the community while R0>1 represents uniform persistence of the disease. The Lyapunov-LaSalle method is used to prove the global stability of the disease-free equilibrium. Moreover, the geometric approach method is used to obtain the sufficient condition for the global stability of the unique endemic equilibrium for R0>1 . Numerical simulation is performed to justify the analytical results. Graphical results are presented and discussed quantitatively. It is found out that the aggravation of the disease can be decreased by using the constant controls treatment and sanitation.


Subject(s)
Diarrhea/microbiology , Diarrhea/virology , Dysentery/microbiology , Dysentery/virology , Models, Biological , Basic Reproduction Number , Computer Simulation , Epidemics , Humans , Numerical Analysis, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...