Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 14(27): 6255-6262, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37390337

ABSTRACT

Optical upconversion via a multiphoton absorption process converts incoherent low-energy photons to shorter wavelengths. In this contribution, we report a solid-state thin film for infrared-to-visible upconversion composed of plasmonic/TiO2 interfaces. When excited at λ = 800 nm, three photons are absorbed, leading to the excitation of TiO2 trap states into an emissive state in the visible domain. The plasmonic nanoparticle enhances the light absorption capabilities of the semiconductor, increasing emission efficiency by 20 times. We demonstrate that the plasmonic nanoparticle only changes the optical absorption of the semiconductor; i.e., the process is purely photonic. The process occurs in the ultrafast domain (<10 ps), contrasting with molecular triplet-triplet exciton annihilation, the commonly used method in photon upconversion, in the nano- to microsecond time scales. The process utilizes pre-existing trap states within the semiconductor bandgap and involves three-photon absorption.

2.
ACS Nano ; 17(5): 4526-4538, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36780645

ABSTRACT

In this work, we have designed and synthesized nickel-laden dendritic plasmonic colloidosomes of Au (black gold-Ni). The photocatalytic CO2 hydrogenation activities of black gold-Ni increased dramatically to the extent that measurable photoactivity was only observed with the black gold-Ni catalyst, with a very high photocatalytic CO production rate (2464 ± 40 mmol gNi-1 h-1) and 95% selectivity. Notably, the reaction was carried out in a flow reactor at low temperature and atmospheric pressure without external heating. The catalyst was stable for at least 100 h. Ultrafast transient absorption spectroscopy studies indicated indirect hot-electron transfer from the black gold to Ni in less than 100 fs, corroborated by a reduction in Au-plasmon electron-phonon lifetime and a bleach signal associated with Ni d-band filling. Photocatalytic reaction rates on excited black gold-Ni showed a superlinear power law dependence on the light intensity, with a power law exponent of 5.6, while photocatalytic quantum efficiencies increased with an increase in light intensity and reaction temperature, which indicated the hot-electron-mediated mechanism. The kinetic isotope effect (KIE) in light (1.91) was higher than that in the dark (∼1), which further indicated the electron-driven plasmonic CO2 hydrogenation. Black gold-Ni catalyzed CO2 hydrogenation in the presence of an electron-accepting molecule, methyl-p-benzoquinone, reduced the CO production rate, asserting the hot-electron-mediated mechanism. Operando diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) showed that CO2 hydrogenation took place by a direct dissociation path via linearly bonded Ni-CO intermediates. The outstanding catalytic performance of black gold-Ni may provide a way to develop plasmonic catalysts for CO2 reduction and other catalytic processes using black gold.

3.
Int J Mol Sci ; 24(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36768327

ABSTRACT

The existing literature survey reports rare and conflicting studies on the effect of the preparation method of metal-based semiconductor photocatalysts on structural/morphological features, electronic properties, and kinetics regulating the photocatalytic H2 generation reaction. In this investigation, we compare the different copper/titania-based photocatalysts for H2 generation synthesized via distinct methods (i.e., photodeposition and impregnation). Our study aims to establish a stringent correlation between physicochemical/electronic properties and photocatalytic performances for H2 generation based on material characterization and kinetic modeling of the experimental outcomes. Estimating unknown kinetic parameters, such as charge recombination rate and quantum yield, suggests a mechanism regulating charge carrier lifetime depending on copper distribution on the TiO2 surface. We demonstrate that H2 generation photoefficiency recorded over impregnated CuxOy/TiO2 is related to an even distribution of Cu(0)/Cu(I) on TiO2, and the formation of an Ohmic junction concertedly extended charge carrier lifetime and separation. The outcomes of the kinetic analysis and the related modeling investigation underpin photocatalyst physicochemical and electronic properties. Overall, the present study lays the groundwork for the future design of metal-based semiconductor photocatalysts with high photoefficiencies for H2 evolution.

4.
J Phys Chem Lett ; 14(4): 1007-1013, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36693133

ABSTRACT

There is an urgent need for efficient solution-processable p-type semiconductors. Copper(I) iodide (CuI) has attracted attention as a potential candidate due to its good electrical properties and ease of preparation. However, its carrier dynamics still need to be better understood. Carrier dynamics after bandgap excitation yielded a convoluted signal of free carriers (positive signal) and a negative feature, which was also present when the material was excited with sub-bandgap excitation energies. This previously unseen feature was found to be dependent on measurement temperature and attributed to negative photoconductivity. The unexpected signal relates to the formation of polarons or strongly bound excitons. The possibility of coupling CuI to plasmonic sensitizers is also tested, yielding positive results. The outcomes mentioned above could have profound implications regarding the applicability of CuI in photocatalytic and photovoltaic systems and could also open a whole new range of possible applications.

5.
Nanomaterials (Basel) ; 11(12)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34947678

ABSTRACT

The proliferation of the internet of things (IoT) and other low-power devices demands the development of energy harvesting solutions to alleviate IoT hardware dependence on single-use batteries, making their deployment more sustainable. The propagation of energy harvesting solutions is strongly associated with technical performance, cost and aesthetics, with the latter often being the driver of adoption. The general abundance of light in the vicinity of IoT devices under their main operation window enables the use of indoor and outdoor photovoltaics as energy harvesters. From those, highly transparent solar cells allow an increased possibility to place a sustainable power source close to the sensors without significant visual appearance. Herein, we report the effect of hole transport layer Li-TFSI dopant content on semi-transparent, direct plasmonic solar cells (DPSC) with a transparency of more than 80% in the 450-800 nm region. The findings revealed that the amount of oxidized spiro-OMeTAD (spiro+TFSI-) significantly modulates the transparency, effective conductance and conditions of device performance, with an optimal performance reached at around 33% relative concentration of Li-TFSI concerning spiro-OMeTAD. The Li-TFSI content did not affect the immediate charge extraction, as revealed by an analysis of electron-phonon lifetime. Hot electrons and holes were injected into the respective layers within 150 fs, suggesting simultaneous injection, as supported by the absence of hysteresis in the I-V curves. The spiro-OMeTAD layer reduces the Au nanoparticles' reflection/backscattering, which improves the overall cell transparency. The results show that the system can be made highly transparent by precise tuning of the doping level of the spiro-OMeTAD layer with retained plasmonics, large optical cross-sections and the ultrathin nature of the devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...