Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Saudi Pharm J ; 30(7): 1036-1043, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35903529

ABSTRACT

Un unsolvable issue of a significant number increase of drug multi resistant strains of microorganisms including Mycobacterium tuberculosis force researchers for continuous design novel pharmaceuticals. The purpose of the study is the establishment of the correlation between the structure of novel heterocyclic hydrazide derivatives and their biological activity. Several hydrazide derivatives of N-piperidinyl and N-morpholinyl and propionic acids and N-piperidinyl acetic and their derivatives were synthesized via condensation of corresponding esters with hydrazine hydrate.The structure of synthesized compounds were confirmed by the use of FTIR, H1NMR, Mass-spectroscopy and element analysis. Investigation of synthesized substances using PASS software was carried out to predict probability of pharmacological activity in silico. The antibacterial, antifungal and spasmolytic activity as well as acute toxicity of obtained compounds were evaluated in vivo. 2-(N-piperidinyl)acetic acid hydrazide and 2-methyl-3-N-piperidinyl)propanacid hydrazide revealed antibacterial and spasmolytic activities comparable to the model drugs (drotaverin) in vitro study. Synthesized compounds in in vivo experiment showed significantly low acute toxicity (LD50 520-5750 mg/kg) compared to commercially available drugs (streptomicine, ciprofloxacinum and drotaverin LD50 100-215 mg/kg). The structure- activity relationship was established that the increasing of the length of the linker between heterocyclic amine and hydrazide group results in a decrease of antimicrobial activity against studied strains (Escherichia coli, Salmonella typhymurium, Salmonella choleraesuis, Staphylococcus aureus).

2.
Molecules ; 26(24)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34946690

ABSTRACT

The effectiveness of an amphoteric cryogel (AAC) as an oral sorbent (enerosorbent) for the treatment of acute poisoning of small animals (rats) with heavy metals (HMs) was studied in in vivo experiments. The morphological structure of the cryogel was examined using scanning electron microscopy/energy-dispersive X-ray analysis and confocal microscopy. The use of the cryogel in the treatment of rats administered an LD50 dose of Cd(NO3)2, CsNO3, Sr(NO3)2, or HgCl2 in aqueous solution showed their high survival rate compared to the control group, which did not receive such treatment. The histological and chemical analysis of internal tissues and the biochemical analysis of the blood of the experimental animals showed the effectiveness of the cryogel in protecting the animals against the damaging effect of HMs on the organism comparable with unithiol, a chelating agent based on 2,3-dimercapto-1-propane sulfonic acid sodium salt (DMPS) approved for the treatment of acute poisoning with some heavy metals.


Subject(s)
Antidotes , Chelating Agents , Cryogels , Heavy Metal Poisoning/drug therapy , Animals , Antidotes/chemical synthesis , Antidotes/chemistry , Antidotes/pharmacology , Chelating Agents/chemical synthesis , Chelating Agents/chemistry , Chelating Agents/pharmacology , Cryogels/chemical synthesis , Cryogels/chemistry , Cryogels/pharmacology , Heavy Metal Poisoning/metabolism , Male , Metals, Heavy/metabolism , Rats
3.
Adv Colloid Interface Sci ; 276: 102088, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31887574

ABSTRACT

The physical and chemical attributes of cryogels, such as the macroporosity, elasticity, water permeability and ease of chemical modification have attracted strong research interest in a variety of areas, such as water purification, catalysis, regenerative medicine, biotechnology, bioremediation and biosensors. Cryogels have shown high removal efficiency and selectivity for heavy metals, nutrients, and toxic dyes from aqueous solutions but there are challenges when scaling up from lab to commercial scale applications. This paper represents an overview of the most recent advances in the use of cryogels for the removal of heavy metals from water and attempts to fill the gap in the literature by deepening the understanding on the mechanisms involved, which strongly depend on the initial monomer composition and post-modification agent precursors used in synthesis. The review also describes the advantages of cryogels over other adsorbents and covers synthesis and characterization methods such as SEM/EDS, TEM, FTIR, zeta potential measurements, porosimetry, swelling and mechanical properties.

4.
Water Res ; 153: 324-334, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30739074

ABSTRACT

The aim of this study was to develop and test a non-diffusion limited, high cell density bioreactor for biodegradation of various phenol derivatives. The bioreactor was obtained using a straightforward one-step preparation method using cryostructuration and direct cross-linking of bacteria into a 3D structured (sponge-like) macroporous cryogel composite material consisting of 11.6% (by mass) cells and 1.2-1.7% polymer, with approximately 87% water (in the material pores). The macroporous cryogel composite material, composed of live bacteria, has pore sizes in the range of 20-150 µm (confirmed by SEM and Laser Scanning Confocal Microscopy). The enzymatic activity of bacteria within the cryogel structure and the effect of freezing on the viability of the cross-linked cells was estimated by MTT assay. Cryogels based on Pseudomonas mendocina, Rhodococcus koreensis and Acinetobacter radioresistens were exploited for the effective bioremediation of phenol and m-cresol, and to a lesser extent 2-chlorophenol and 4-chlorophenol, utilising these phenolic contaminants in water as their only source of carbon. For evaluation of treatment scalability the bioreactors were prepared in plastic "Kaldnes" carriers to improve their mechanical properties and allow application in batch or fluidised bed water treatment modes.


Subject(s)
Cryogels , Water Purification , Biodegradation, Environmental , Bioreactors , Phenol
SELECTION OF CITATIONS
SEARCH DETAIL
...