Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Qual ; 50(1): 241-251, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33169408

ABSTRACT

Neonicotinoid pesticides can persist in soils for extended time periods; however, they also have a high potential to contaminate ground and surface waters. Studies have reported negative effects associated with neonicotinoids and nontarget taxa, including aquatic invertebrates, pollinating insect species, and insectivorous birds. This study evaluated factors associated with clothianidin (CTN) degradation and sorption in Missouri wetland soils to assess the potential for wetland soils to mitigate potential environmental risks associated with neonicotinoids. Solid-to-solution partition coefficients (Kd ) for CTN sorption to eight wetland soils were determined via single-point sorption experiments, and sorption isotherm experiments were conducted using the two most contrasting soils. Clothianidin degradation was determined under oxic and anoxic conditions over 60 d. Degradation data were fit to zero- and first-order kinetic decay models to determine CTN half-life (t0.5 ). Sorption results indicated CTN sorption to wetland soil was relatively weak (average Kd , 3.58 L kg-1 ); thus, CTN has the potential to be mobile and bioavailable within wetland soils. However, incubation results showed anoxic conditions significantly increased CTN degradation rates in wetland soils (anoxic average t0.5 , 27.2 d; oxic average t0.5 , 149.1 d). A significant negative correlation was observed between anoxic half-life values and soil organic C content (r2  = .782; p = .046). Greater CTN degradation rates in wetland soils under anoxic conditions suggest that managing wetlands to facilitate anoxic conditions could mitigate CTN presence in the environment and reduce exposure to nontarget organisms.


Subject(s)
Soil Pollutants , Soil , Adsorption , Guanidines , Missouri , Neonicotinoids , Thiazoles , Wetlands
2.
Ecol Evol ; 9(19): 11171-11184, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31641463

ABSTRACT

AIM: For many endemic species with limited dispersal capacities, the relationship between landscape changes and species distributions is still unclear. We characterized the population structure of the endemic ringed salamander (Ambystoma annulatum) across its distribution in the Central Interior Highlands (CIH) of North America, an area of high species endemism, to infer the ecological and evolutionary history of the species. METHODS: We sampled 498 individuals across the species distribution and characterized the population genetic structure using nuclear microsatellite and mitochondrial DNA (mtDNA) markers. RESULTS: Ambystoma annulatum exist in two strongly supported nuclear genetic clusters across the CIH that correspond to a northern cluster that includes the Missouri Ozark populations and a southern cluster that includes the Arkansas and Oklahoma Ozarks and the Ouachita Mountains. Our demographic models estimated that these populations diverged approximately 2,700 years ago. Pairwise estimates of genetic differentiation at microsatellite and mtDNA markers indicated limited contemporary gene flow and suggest that genetic differentiation was primarily influenced by changes in the post-Pleistocene landscape of the CIH. MAIN CONCLUSIONS: Both the geologic history and post-European settlement history of the CIH have influenced the population genetic structure of A. annulatum. The low mtDNA diversity suggests a retraction into and expansion out of refugial areas in the south-central Ozarks, during temperature fluctuations of the Pleistocene and Holocene epochs. Similarly, the estimated divergence time for the two nuclear clusters corresponds to changes in the post-Pleistocene landscape. More recently, decreased A. annulatum gene flow may be a result of increased habitat fragmentation and alteration post-European settlement.

SELECTION OF CITATIONS
SEARCH DETAIL
...