Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 22145, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38092873

ABSTRACT

Phthalates constitute a family of anthropogenic chemicals developed to be used in the manufacture of plastics, solvents, and personal care products. Their dispersion and accumulation in many environments can occur at all stages of their use (from synthesis to recycling). However, many phthalates together with other accumulated engineered chemicals have been shown to interfere with hormone activities. These compounds are also in close contact with microorganisms that are free-living, in biofilms or in microbiota, within multicellular organisms. Herein, the activity of several phthalates and their substitutes were investigated on the opportunistic pathogen Legionella pneumophila, an aquatic microbe that can infect humans. Beside showing the toxicity of some phthalates, data suggested that Acetyl tributyl citrate (ATBC) and DBP (Di-n-butyl phthalate) at environmental doses (i.e. 10-6 M and 10-8 M) can modulate Legionella behavior in terms of motility, biofilm formation and response to antibiotics. A dose of 10-6 M mostly induced adverse effects for the bacteria, in contrast to a dose of 10-8 M. No perturbation of virulence towards Acanthamoeba castellanii was recorded. These behavioral alterations suggest that L. pneumophila is able to sense ATBC and DBP, in a cross-talk that either mimics the response to a native ligand, or dysregulates its physiology.


Subject(s)
Legionella pneumophila , Legionella , Phthalic Acids , Humans , Legionella pneumophila/physiology , Phthalic Acids/pharmacology , Biofilms
2.
Front Cell Infect Microbiol ; 13: 1292233, 2023.
Article in English | MEDLINE | ID: mdl-38029256

ABSTRACT

For several decades, questions have been raised about the effects of endocrine disruptors (ED) on environment and health. In humans, EDs interferes with hormones that are responsible for the maintenance of homeostasis, reproduction and development and therefore can cause developmental, metabolic and reproductive disorders. Because of their ubiquity in the environment, EDs can adversely impact microbial communities and pathogens virulence. At a time when bacterial resistance is inevitably emerging, it is necessary to understand the effects of EDs on the behavior of pathogenic bacteria and to identify the resulting mechanisms. Increasing studies have shown that exposure to environmental EDs can affect bacteria physiology. This review aims to highlight current knowledge of the effect of EDs on the virulence of human bacterial pathogens and discuss the future directions to investigate bacteria/EDs interaction. Given the data presented here, extended studies are required to understand the mechanisms by which EDs could modulate bacterial phenotypes in order to understand the health risks.


Subject(s)
Endocrine Disruptors , Humans , Virulence , Hormones , Homeostasis , Phenotype
3.
Environ Microbiol Rep ; 15(6): 740-756, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37586891

ABSTRACT

Anthropogenic activities contribute to the spread of chemicals considered as endocrine disruptors (ED) in freshwater ecosystems. While several studies have reported interactions of EDs with organisms in those ecosystems, very few have assessed the effect of these compounds on pathogenic bacteria. Here we have evaluated the impact of five EDs found in aquatic resources on the virulence of human pathogen P. aeruginosa. ED concentrations in French aquatic resources of bisphenol A (BPA), dibutyl phthalate (DBP), ethylparaben (EP), methylparaben (MP) and triclosan (TCS) at mean molar concentration were 1.13, 3.58, 0.53, 0.69, and 0.81 nM respectively. No impact on bacterial growth was observed at EDs highest tested concentration. Swimming motility of P. aeruginosa decreased to 28.4% when exposed to EP at 100 µM. Swarming motility increased, with MP at 1 nM, 10 and 100 µM (1.5-fold); conversely, a decrease of 78.5%, with DBP at 100 µM was observed. Furthermore, exposure to 1 nM BPA, DBP and EP increased biofilm formation. P. aeruginosa adhesion to lung cells was two-fold higher upon exposure to 1 nM EP. We demonstrate that ED exposure may simultaneously decrease mobility and increase cell adhesion and biofilm formation, which may promote colonisation and establishment of the pathogen.


Subject(s)
Endocrine Disruptors , Pseudomonas aeruginosa , Humans , Endocrine Disruptors/toxicity , Ecosystem , Virulence , Dibutyl Phthalate/pharmacology , Biofilms
4.
Microorganisms ; 11(6)2023 May 24.
Article in English | MEDLINE | ID: mdl-37374877

ABSTRACT

The release of a wide variety of persistent chemical contaminants into wastewater has become a growing concern due to their potential health and environmental risks. While the toxic effects of these pollutants on aquatic organisms have been extensively studied, their impact on microbial pathogens and their virulence mechanisms remains largely unexplored. This research paper focuses on the identification and prioritization of chemical pollutants that increase bacterial pathogenicity, which is a public health concern. In order to predict how chemical compounds, such as pesticides and pharmaceuticals, would affect the virulence mechanisms of three bacterial strains (Escherichia coli K12, Pseudomonas aeruginosa H103, and Salmonella enterica serovar. Typhimurium), this study has developed quantitative structure-activity relationship (QSAR) models. The use of analysis of variance (ANOVA) functions assists in developing QSAR models based on the chemical structure of the compounds, to predict their effect on the growth and swarming behavior of the bacterial strains. The results showed an uncertainty in the created model, and that increases in virulence factors, including growth and motility of bacteria, after exposure to the studied compounds are possible to be predicted. These results could be more accurate if the interactions between groups of functions are included. For that, to make an accurate and universal model, it is essential to incorporate a larger number of compounds of similar and different structures.

5.
Arch Microbiol ; 205(5): 194, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37061655

ABSTRACT

In esca disease affecting grapevines, Phaeomoniella chlamydospora and Phaeoacremonium minimum colonize the woody parts of the trunks and arms, where they obtain nutrition from xylem sap and, potentially, from residues resulting from the enzymatic breakdown of lignified cell walls, particularly osidic residues. We quantified the secretion of lignin peroxidase, manganese peroxidase and laccase by these fungi in woody tissues of selectively infected cuttings using immunolabeling and transmission electron microscopy. Our results indicated that the detection of these enzymes was generally higher in tissues infected with Phaeoacremonium minimum. These data were confirmed through immunodetection of enzymes secreted by hyphae of fungi grown in vitro. Additionally, we observed that the supply of various carbohydrates (mono, di, tri and tetrasaccharides and polymers) differentially influenced fungal growth and polypeptide secretion. Since some secreted polypeptides display detrimental effects on grapevine cells, these results raise the question of whether the carbohydrate environment could be a factor affecting the aggressiveness of these pathogens.


Subject(s)
Vitis , Wood , Wood/microbiology , Plant Diseases/microbiology , Vitis/microbiology , Carbohydrates
6.
Environ Monit Assess ; 195(1): 121, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36399221

ABSTRACT

The Akkar plain is the second largest agricultural area in Lebanon. This region produces huge amount of regular crops such as maize, fruits, and vegetables. In order to protect the crops, farmers use large quantities of many pesticides (including authorized and prohibited molecules) without respecting the recommended doses. In this work, we wanted to study the evolution of OCP and OPP residues at 3-year intervals in water wells in the Akkar region. Twenty OCPs and 8 OPPs were monitored in eight wells in different villages in the plain and mountains of Akkar. Solid phase extraction (SPE) method was used for pesticide extraction, followed by gas chromatography-mass spectrometry (GC-MS) analysis. The results revealed an increasing concentration of OCPs and OPPs in groundwater over the last 3 years (between 2017 and 2019-2020). This increase in contamination is due to the uncontrolled and still unregulated (by the authorities) use of pesticides, and also to the introduction of new crops. The concentrations found in groundwater confirm that some banned pesticides are still widely used. The calculation of the theoretical pesticide intake suggests that pesticide concentrations in Akkar represent a greater health risk for the population consuming well water during the rainy season.


Subject(s)
Pesticide Residues , Pesticides , Pesticide Residues/analysis , Water Wells , Organophosphates/analysis , Lebanon , Environmental Monitoring , Pesticides/analysis
7.
Microorganisms ; 10(9)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36144390

ABSTRACT

Phthalates are used in a variety of applications-for example, as plasticizers in polyvinylchloride products to improve their flexibility-and can be easily released into the environment. In addition to being major persistent organic environmental pollutants, some phthalates are responsible for the carcinogenicity, teratogenicity, and endocrine disruption that are notably affecting steroidogenesis in mammals. Numerous studies have thus focused on deciphering their effects on mammals and eukaryotic cells. While multicellular organisms such as humans are known to display various microbiota, including all of the microorganisms that may be commensal, symbiotic, or pathogenic, few studies have aimed at investigating the relationships between phthalates and bacteria, notably regarding their effects on opportunistic pathogens and the severity of the associated pathologies. Herein, the effects of phthalates and their substitutes were investigated on the human pathogen, Pseudomonas aeruginosa, in terms of physiology, virulence, susceptibility to antibiotics, and ability to form biofilms. We show in particular that most of these compounds increased biofilm formation, while some of them enhanced the bacterial membrane fluidity and altered the bacterial morphology.

8.
Front Microbiol ; 13: 828359, 2022.
Article in English | MEDLINE | ID: mdl-35495704

ABSTRACT

Altering the gut microbiota can negatively affect human health. Efforts may be sustained to predict the intended or unintended effects of molecules not naturally produced or expected to be present within the organism on the gut microbiota. Here, culture-dependent and DNA-based approaches were combined to UHPLC-MS/MS analyses in order to investigate the reciprocal interactions between a constructed Human Gut Microbiota Model (HGMM) and molecules including antibiotics, drugs, and xenobiotics. Our HGMM was composed of strains from the five phyla commonly described in human gut microbiota and belonging to Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria, and Actinobacteria. Relevantly, the bacterial diversity was conserved in our constructed human gut model through subcultures. Uneven richness distribution was revealed and the sensitivity of the HGMM was mainly affected by antibiotic exposure rather than by drugs or xenobiotics. Interestingly, the constructed model and the individual cultured strains respond with the same sensitivity to the different molecules. UHPLC-MS/MS analyses revealed the disappearance of some native molecules in the supernatants of the HGMM as well as in those of the individual strains. These results suggest that biotransformation of molecules occurred in the presence of our gut microbiota model and the coupled approaches performed on the individual cultures may emphasize new bacterial strains active in these metabolic processes. From this study, the new HGMM appears as a simple, fast, stable, and inexpensive model for screening the reciprocal interactions between the intestinal microbiota and molecules of interest.

9.
Microbiol Spectr ; 9(1): e0040421, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34378969

ABSTRACT

Legionella pneumophila, the causative agent of Legionnaires' disease, is mostly found in man-made water systems and is one of the most closely monitored waterborne pathogens. With the aim of finding natural ways to control waterborne pathogens and thus further reduce the impact of disinfection by-products on human health, some studies have demonstrated the ability of bacteria to kill Legionella through the production of secondary metabolites or antimicrobial compounds. Here, we describe an unexpected growth inhibition of L. pneumophila when exposed to a physically separated strain of Pseudomonas fluorescens, designated as MFE01. Most of the members of the Legionellaceae family are sensitive to the volatile substances emitted by MFE01, unlike other bacteria tested. Using headspace solid-phase microextraction GC-MS strategy, a volatilome comparison revealed that emission of 1-undecene, 2-undecanone, and 2-tridecanone were mainly reduced in a Tn5-transposon mutant unable to inhibit at distance the growth of L. pneumophila strain Lens. We showed that 1-undecene was mainly responsible for the inhibition at distance in vitro, and led to cell lysis in small amounts, as determined by gas chromatography-mass spectrometry (GC-MS). Collectively, our results provide new insights into the mode of action of bacterial volatiles and highlight them as potent anti-Legionella agents to focus research on novel strategies to fight legionellosis. IMPORTANCE Microbial volatile compounds are molecules whose activities are increasingly attracting the attention of researchers. Indeed, they can act as key compounds in long-distance intrakingdom and interkingdom communication, but also as antimicrobials in competition and predation. In fact, most studies to date have focused on their antifungal activities and only a few have reported on their antibacterial properties. Here, we describe that 1-undecene, naturally produced by P. fluorescens, is a volatile with potent activity against bacteria of the genus Legionella. In small amounts, it is capable of inducing cell lysis even when the producing strain is physically separated from the target. This is the first time that such activity is described. This molecule could therefore constitute an efficient compound to counter bacterial pathogens whose treatment may fail, particularly in pulmonary diseases. Indeed, inhalation of these volatiles should be considered as a possible route of therapy in addition to antibiotic treatment.


Subject(s)
Anti-Bacterial Agents/pharmacology , Legionella pneumophila/drug effects , Pseudomonas fluorescens/metabolism , Humans , Legionella pneumophila/growth & development , Legionnaires' Disease/therapy , Pseudomonas fluorescens/genetics , Volatile Organic Compounds/analysis , Volatile Organic Compounds/pharmacology
10.
Microorganisms ; 9(7)2021 Jul 17.
Article in English | MEDLINE | ID: mdl-34361961

ABSTRACT

Ixodes ricinus is the most common hard tick species in Europe and an important vector of pathogens of human and animal health concerns. The rise of high-throughput sequencing has facilitated the identification of many tick-borne pathogens and, more globally, of various microbiota members depending on the scale of concern. In this study, we aimed to assess the bacterial diversity of individual I. ricinus questing nymphs collected in France using high-throughput 16S gene metabarcoding. From 180 dragging-collected nymphs, we identified more than 700 bacterial genera, of which about 20 are abundantly represented (>1% of total reads). Together with 136 other genera assigned, they constitute a core internal microbiota in this study. We also identified 20 individuals carrying Borreliella. The most abundant species is B. afzelii, known to be one of the bacteria responsible for Lyme disease in Europe. Co-detection of up to four Borreliella genospecies within the same individual has also been retrieved. The detection and co-detection rate of Borreliella in I. ricinus nymphs is high and raises the question of interactions between these bacteria and the communities constituting the internal microbiota.

11.
Genome Biol Evol ; 13(3)2021 03 01.
Article in English | MEDLINE | ID: mdl-33599258

ABSTRACT

Legionella spp. are ubiquitous bacteria principally found in water networks and ∼20 species are implicated in Legionnaire's disease. Among them, Legionella pneumophila is an intracellular pathogen of environmental protozoa, responsible for ∼90% of cases in the world. Legionella pneumophila regulates in part its virulence by a quorum sensing system named "Legionella quorum sensing," composed of a signal synthase LqsA, two histidine kinase membrane receptors LqsS and LqsT and a cytoplasmic receptor LqsR. To date, this communication system was only found in L. pneumophila. Here, we investigated 58 Legionella genomes to determine the presence of a lqs cluster or homologous receptors using TBlastN. This analysis revealed three categories of species: 19 harbored a complete lqs cluster, 20 did not possess lqsA but maintained the receptor lqsR and/or lqsS, and 19 did not have any of the lqs genes. No correlation was observed between pathogenicity and the presence of a quorum sensing system. We determined by RT-qPCR that the lqsA gene was expressed at least in four strains among different species available in our laboratory. Furthermore, we showed that the lqs genomic region was conserved even in species possessing only the receptors of the quorum sensing system, indicating an ancestral acquisition and various loss dynamics during evolution. This system could therefore function in interspecific communication as well.


Subject(s)
Legionella pneumophila/genetics , Legionella pneumophila/metabolism , Quorum Sensing/genetics , Bacterial Proteins/genetics , DNA, Bacterial , Gene Expression Regulation, Bacterial , Genome , Genomics , Histidine Kinase/genetics , Legionella/classification , Legionella/genetics , Legionella/metabolism , Multigene Family , Phylogeny , Virulence
12.
Physiol Plant ; 172(1): 218-232, 2021 May.
Article in English | MEDLINE | ID: mdl-33421161

ABSTRACT

Actin microfilaments (F-actin) are major components of the cytoskeleton essential for many cellular dynamic processes (vesicle trafficking, cytoplasmic streaming, organelle movements). The aim of this study was to examine whether cortical actin microfilaments might be implicated in the regulation of nutrient uptake in root and leaf cells of Beta vulgaris. Using antibodies raised against actin and the AtSUC1 sucrose transporter, immunochemical assays demonstrated that the expression of actin and a sucrose transporter showed different characteristics, when detected on plasma membrane vesicles (PMVs) purified from roots and from leaves. The in situ immunolabeling of actin and AtSUC1 sites in PMVs and tissues showed their close proximity to the plasma membrane. Using co-labeling in protoplasts, actin and sucrose transporters were localized along the internal border and in the outermost part of the plasma membrane, respectively. This respective membrane co-localization was confirmed on PMVs and in tissues using transmission electronic microscopy. The possible functional role of actin in sucrose uptake (and valine uptake, comparatively) by PMVs and tissues from roots and leaves was examined using the pharmacological inhibitors, cytochalasin B (CB), cytochalasin D (CD), and phalloidin (PH). CB and CD inhibited the sucrose and valine uptake by root tissues in a concentration-dependent manner above 1 µM, whereas PH had no such effect. Comparatively, the toxins inhibited the sucrose and valine uptake in leaf discs to a lesser extent. The inhibition was not due to a hindering of the proton pumping and H+ -ATPase catalytic activity determined in PMVs incubated in presence of these toxins.


Subject(s)
Beta vulgaris , Actins , Plant Leaves , Sucrose , Valine
13.
Anaerobe ; 67: 102314, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33359396

ABSTRACT

We have a vast knowledge on human intestinal microbiota but it can still be regarded incomplete. One of the objectives of scientists using so-called "omics" techniques is to be interested in the consequences that drugs can have on the composition of the intestinal microbiota and inversely. To date, few publications have reported the effects of drugs on the growth of bacteria composing this microbiota using a "culturomics" approach. We focused on antibiotics commonly prescribed for which the only published are the susceptibility of the pathogenic strains and not that of the commensal strains. The aim of our study was to determine the sensitivity of 30 strains considered to represent the intestinal core microbiota to 8 antibiotics and to study the possible modification of these molecules by bacteria. The 30 bacterial strains were cultured under anaerobic conditions in order to determine their sensitivity to the antibiotics. After 48 h of culture, the supernatants were also analyzed via UHPLC-MS/MS in order to determine if the antibiotics have been chemically modified. Under the current experimental conditions, cefpodoxime, metronidazole, erythromycin, sulfamethozaxole, trimethoprim and the trimethoprim/sulfamethozaxole combination have little impact on the core microbiota strain growth. On the contrary, moxifloxacin and amoxicillin inhibit the growth of numerous strains of our panel. Using UHPLC-MS/MS analyses, we have shown that some antibiotics can be modifed by the bacteria composing the intestinal core microbiome. The bacteria that make up the intestinal microbiota core are impacted by the antibiotics most commonly prescribed in clinics today and inversely.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chromatography, Liquid/methods , Gastrointestinal Microbiome/drug effects , Tandem Mass Spectrometry/methods , Amoxicillin/pharmacology , Humans , Mass Screening , Metronidazole/pharmacology , Microbial Sensitivity Tests , Moxifloxacin/pharmacology , Sulfamethoxazole/pharmacology
14.
Int J Food Microbiol ; 333: 108798, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-32771821

ABSTRACT

Biopreservation of dairy products by acid lactic bacteria appears as a promising alternative to either replace or reduce the use of chemical preservatives. This study aimed at the identification of bacteria preventing fungal spoilers growth in dairy products, and, at the understanding of their antifungal activity. First, antifungal activity of eighteen Lactobacillus strains was tested against five molds and four yeasts leading to selection of L. casei 7006 which had an activity against seven fungal targets. Then, challenge tests against C. lusistaniae 3668 in a cheese-mimicking matrix have been performed demonstrating that this strain was able to reduce strongly this yeast growth after 14 and 21 days storages at 7 °C. Antifungal compounds produced in cheese-mimicking matrix containing L. casei 7006 strain were quantified, then compared to the one prepared with an inactive strain (L. casei 6960) or without Lactobacillus strain. Three compounds were differently produced between cheeses with or without Lactobacillus strain after 21 days at 7 °C: lactic acid, benzoic acid and diacetyl. However, lactic acid concentrations were similar between the three cheeses after 14 days at 7 °C, but an antifungal activity was only associated to L. casei 7006 presence. Benzoic acid concentrations between cheese with L. casei 7006 and negative control L. casei 6960 were also the same. Among the antifungal molecules retrieved from these analyses, diacetyl was the most significantly overproduced in cheese containing L. casei 7006, thus this volatile was associated to the antifungal activity of this strain.


Subject(s)
Antibiosis/physiology , Cheese/microbiology , Food Preservatives/analysis , Lactobacillus/metabolism , Antifungal Agents/analysis , Benzoic Acid/analysis , Diacetyl/analysis , Food Microbiology , Lactic Acid/analysis , Lactobacillus/classification , Lactobacillus/growth & development , Yeasts
15.
Sci Rep ; 10(1): 3978, 2020 03 04.
Article in English | MEDLINE | ID: mdl-32132569

ABSTRACT

Temporin-SHa (SHa) is a small cationic host defence peptide (HDP) produced in skin secretions of the Sahara frog Pelophylax saharicus. This peptide has a broad-spectrum activity, efficiently targeting bacteria, parasites and viruses. Noticeably, SHa has demonstrated an ability to kill Leishmania infantum parasites (amastigotes) within macrophages. Recently, an analog of SHa with an increased net positive charge, named [K3]SHa, has been designed to improve those activities. SHa and [K3]SHa were both shown to exhibit leishmanicidal activity mainly by permeabilization of cell membranes but could also induce apoptotis-like death. Temporins are usually poorly active against Gram-negative bacteria whereas many of these species are of public health interest. Among them, Legionella pneumophila, the etiological agent of Legionnaire's disease, is of major concern. Indeed, this bacterium adopts an intracellular lifestyle and replicate inside alveolar macrophages likewise inside its numerous protozoan hosts. Despite several authors have studied the antimicrobial activity of many compounds on L. pneumophila released from host cells, nothing is known about activity on intracellular L. pneumophila within their hosts, and subsequently mechanisms of action that could be involved. Here, we showed for the first time that SHa and [K3]SHa were active towards several species of Legionella. Both peptides displayed bactericidal activity and caused a loss of the bacterial envelope integrity leading to a rapid drop in cell viability. Regarding amoebae and THP-1-derived macrophages, SHa was less toxic than [K3]SHa and exhibited low half maximal lethal concentrations (LC50). When used at non-toxic concentration (6.25 µM), SHa killed more than 90% L. pneumophila within amoebae and around 50% within macrophages. Using SHa labeled with the fluorescent dye Cy5, we showed an evenly diffusion within cells except in vacuoles. Moreover, SHa was able to enter the nucleus of amoebae and accumulate in the nucleolus. This subcellular localization seemed specific as macrophages nucleoli remained unlabeled. Finally, no modifications in the expression of cytokines and HDPs were recorded when macrophages were treated with 6.25 µM SHa. By combining all data, we showed that temporin-SHa decreases the intracellular L. pneumophila load within amoebae and macrophages without being toxic for eukaryotic cells. This peptide was also able to reach the nucleolus of amoebae but was not capable to penetrate inside vacuoles. These data are in favor of an indirect action of SHa towards intracellular Legionella and make this peptide a promising template for further developments.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Anura , Intracellular Space/microbiology , Legionella pneumophila/drug effects , Legionella pneumophila/physiology , Skin/chemistry , Acanthamoeba castellanii/drug effects , Acanthamoeba castellanii/microbiology , Animals , Cell Line , Humans , Macrophages/cytology , Macrophages/microbiology , Permeability/drug effects
16.
Genes (Basel) ; 11(1)2020 01 14.
Article in English | MEDLINE | ID: mdl-31947541

ABSTRACT

In crustaceans, antimicrobial peptides (AMPs) are clustered into four major groups according to their amino acid composition and structure: (1) single-domain peptides containing cysteine residues such as anti-lipopolysaccharide-factor (ALF), (2) multi-domain or chimeric AMPs such as crustins, (3) non-conventional AMPs, and (4) linear single-domain AMPs. The majority of AMPs has been described in commercially exploited crustaceans, particularly decapods living in aquatic environments (crab, shrimp, lobster, and crayfish). Here, we aimed at establishing the AMPs repertoire of terrestrial isopods (Oniscidea), an original suborder of crustaceans adapted to life outside of the aquatic environment. Using transcriptomic data from 21 species, we identified 110 ALF and 73 crustin sequences. We also characterized the full-length sequence of armadillidins from 17 species, similar to the AMP previously described in the terrestrial isopod Armadillidium vulgare. Furthermore, we tested the antimicrobial activity of three armadillidin peptides characterized from three distantly related species. This analysis revealed similar activity spectra against pathogens, despite extensive structural variation among the tested peptides. In addition to conventional crustacean AMPs, our work highlights armadillidins as a new and independent family of AMPs specific to the Oniscidea, thus opening new perspectives concerning the study of the immune system of terrestrial isopods.


Subject(s)
Antimicrobial Cationic Peptides/genetics , Isopoda/genetics , Amino Acid Sequence/genetics , Animals , Antimicrobial Cationic Peptides/metabolism , Cloning, Molecular/methods , Isopoda/metabolism , Phylogeny , Sequence Alignment/methods , Transcription Factors/genetics , Transcription Factors/metabolism
17.
Biomed Res Int ; 2018: 8194368, 2018.
Article in English | MEDLINE | ID: mdl-30426015

ABSTRACT

Legionella pneumophila, the causative agent of Legionnaires' disease, is a waterborne bacterium mainly found in man-made water systems in close association with free-living amoebae and multispecies biofilms. Pseudomonas strains, originating from various environments including freshwater systems or isolated from hospitalized patients, were tested for their antagonistic activity towards L. pneumophila. A high amount of tested strains was thus found to be active. This antibacterial activity was correlated to the presence of tensioactive agents in culture supernatants. As Pseudomonas strains were known to produce biosurfactants, these compounds were specifically extracted and purified from active strains and further characterized using reverse-phase HPLC and mass spectrometry methods. Finally, all biosurfactants tested (lipopeptides and rhamnolipids) were found active and this activity was shown to be higher towards Legionella strains compared to various other bacteria. Therefore, described biosurfactants are potent anti-Legionella agents that could be used in the water treatment industry although tests are needed to evaluate how effective they would be under field conditions.


Subject(s)
Anti-Bacterial Agents , Glycolipids , Legionella pneumophila/growth & development , Lipopeptides , Pseudomonas , Surface-Active Agents , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Glycolipids/biosynthesis , Glycolipids/chemistry , Glycolipids/isolation & purification , Glycolipids/pharmacology , Humans , Legionella pneumophila/isolation & purification , Lipopeptides/biosynthesis , Lipopeptides/chemistry , Lipopeptides/isolation & purification , Lipopeptides/pharmacology , Pseudomonas/chemistry , Pseudomonas/metabolism , Surface-Active Agents/chemistry , Surface-Active Agents/isolation & purification , Surface-Active Agents/metabolism , Surface-Active Agents/pharmacology , Water Microbiology
18.
Pathogens ; 7(4)2018 Nov 26.
Article in English | MEDLINE | ID: mdl-30486310

ABSTRACT

Marine pathogenic bacteria are able to form biofilms on many surfaces, such as mollusc shells, and they can wait for the appropriate opportunity to induce their virulence. Vibrio tapetis can develop such biofilms on the inner surface of shells of the Ruditapes philippinarum clam, leading to the formation of a brown conchiolin deposit in the form of a ring, hence the name of the disease: Brown Ring Disease. The virulence of V. tapetis is presumed to be related to its capacity to form biofilms, but the link has never been clearly established at the physiological or genetic level. In the present study, we used RNA-seq analysis to identify biofilm- and virulence-related genes displaying altered expression in biofilms compared to the planktonic condition. A flow cell system was employed to grow biofilms to obtain both structural and transcriptomic views of the biofilms. We found that 3615 genes were differentially expressed, confirming that biofilm and planktonic lifestyles are very different. As expected, the differentially expressed genes included those involved in biofilm formation, such as motility- and polysaccharide synthesis-related genes. The data show that quorum sensing is probably mediated by the AI-2/LuxO system in V. tapetis biofilms. The expression of genes encoding the Type VI Secretion System and associated exported proteins are strongly induced, suggesting that V. tapetis activates this virulence factor when living in biofilm.

19.
Plant Physiol Biochem ; 129: 77-89, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29852365

ABSTRACT

Early effects induced by cysteine were monitored using the model of Mimosa pudica pulvinar cells. Rapid dose-dependent membrane depolarization (within seconds) and modification of proton secretion (within minutes) were triggered at cysteine concentrations higher than 0.1 mM. These effects did not result from a modification of the plasma membrane H+-ATPase activity nor from a protonophore effect as shown by assays on plasma membrane vesicles isolated from pulvinar tissues. In a 0.5-10 mM range, cysteine inhibited the ion-driven turgor-mediated seismonastic reaction of Mimosa pudica primary pulvini and the dark-induced movement of Cassia fasciculata leaflets. At concentrations higher than 1 mM, it induced a long-lasting leaflet necrosis dependent on the concentration and treatment duration. Electron microscopy showed that cysteine induced important damage in the nucleus, mitochondria, endoplasmic reticulum and Golgi of the M. pudica motor cell. Cysteine inhibited in a concentration-dependent manner, from 0.5 to 20 mM, both the mycelial growth and the spore germination of the fungal pathogens Phaeomoniella chlamydospora and Phaeoacremonium minimum implicated in esca disease of grapevines. Using [35S] cysteine, we showed that the amino acid was absorbed following leaf spraying, translocated from leaves to other parts of grapevine cuttings and accumulated within trunks and roots. Therefore, cysteine showed relevant properties to be a candidate able to control fungal diseases either by acting as an early signal directing plant host reaction or/and by acting directly on fungal development.


Subject(s)
Cysteine/physiology , Disease Resistance/physiology , Plant Diseases/microbiology , Signal Transduction , Ascomycota , Cassia/microbiology , Cassia/physiology , Microscopy, Electron , Mimosa/microbiology , Mimosa/physiology , Plant Leaves/metabolism , Plant Leaves/microbiology , Signal Transduction/physiology , Vitis/microbiology , Vitis/physiology
20.
Front Microbiol ; 9: 3360, 2018.
Article in English | MEDLINE | ID: mdl-30697209

ABSTRACT

Legionella pneumophila is one of the most tracked waterborne pathogens and remains an important threat to human health. Despite the use of biocides, L. pneumophila is able to persist in engineered water systems with the help of multispecies biofilms and phagocytic protists. For few years now, high-throughput sequencing methods have enabled a better understanding of microbial communities in freshwater environments. Those unexplored and complex communities compete for nutrients using antagonistic molecules as war weapons. Up to now, few of these molecules were characterized in regards of L. pneumophila sensitivity. In this context, we established, from five freshwater environments, a vast collection of culturable bacteria and investigated their ability to inhibit the growth of L. pneumophila. All bacterial isolates were classified within 4 phyla, namely Proteobacteria (179/273), Bacteroidetes (48/273), Firmicutes (43/273), and Actinobacteria (3/273) according to 16S rRNA coding sequences. Aeromonas, Bacillus, Flavobacterium, and Pseudomonas were the most abundant genera (154/273). Among the 273 isolates, 178 (65.2%) were shown to be active against L. pneumophila including 137 isolates of the four previously cited main genera. Additionally, other less represented genera depicted anti-Legionella activity such as Acinetobacter, Kluyvera, Rahnella, or Sphingobacterium. Furthermore, various inhibition diameters were observed among active isolates, ranging from 0.4 to 9 cm. Such variability suggests the presence of numerous and diverse natural compounds in the microenvironment of L. pneumophila. These molecules include both diffusible secreted compounds and volatile organic compounds, the latter being mainly produced by Pseudomonas strains. Altogether, this work sheds light on unexplored freshwater bacterial communities that could be relevant for the biological control of L. pneumophila in manmade water systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...