Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37786807

ABSTRACT

Background: Cardiac optical mapping is an imaging technique that measures fluorescent signals across a cardiac preparation. Dual optical imaging of voltage-sensitive and calcium-sensitive probes allows for simultaneous recordings of cardiac action potentials and intracellular calcium transients with high spatiotemporal resolution. The analysis of these complex optical datasets is both time intensive and technically challenging; as such, we have developed a software package for semi-automated image processing and analysis. Herein, we report an updated version of our software package (KairoSight-3.0) with features to enhance the characterization of cardiac parameters using optical signals. Methods: To test software validity and applicability, we used Langendorff-perfused heart preparations to record transmembrane voltage and intracellular calcium signals from the epicardial surface. Isolated hearts from guinea pigs and rats were loaded with a potentiometric dye (RH237) and/or calcium indicator dye (Rhod-2AM) and fluorescent signals were acquired. We used Python 3.8.5 programming language to develop the KairoSight-3.0 software. Cardiac maps were validated with a user-specified manual mapping approach. Results: Manual maps of action potential duration (30 or 80 % repolarization), calcium transient duration (30 or 80 % reuptake), action potential and calcium transient alternans were constituted to validate the accuracy of software-generated maps. Manual and software maps had high accuracy, with >97 % of manual and software values falling within 10 ms of each other and >75 % within 5 ms for action potential duration and calcium transient duration measurements (n = 1000-2000 pixels). Further, our software package includes additional measurement tools to analyze signal-to-noise ratio, conduction velocity, action potential and calcium transient alternans, and action potential-calcium transient coupling time to produce physiologically meaningful optical maps. Conclusions: KairoSight-3.0 has enhanced capabilities to perform measurements of cardiac electrophysiology, calcium handling, alternans, and the excitation-contraction coupling with satisfactory accuracy.

2.
bioRxiv ; 2023 May 02.
Article in English | MEDLINE | ID: mdl-37205349

ABSTRACT

Background: Cardiac optical mapping is an imaging technique that measures fluorescent signals across a cardiac preparation. Dual optical mapping of voltage-sensitive and calcium-sensitive probes allow for simultaneous recordings of cardiac action potentials and intracellular calcium transients with high spatiotemporal resolution. The analysis of these complex optical datasets is both time intensive and technically challenging; as such, we have developed a software package for semi-automated image processing and analysis. Herein, we report an updated version of our software package ( KairoSight-3 . 0 ) with features to enhance characterization of cardiac parameters using optical signals. Methods: To test software validity and applicability, we used Langendorff-perfused heart preparations to record transmembrane voltage and intracellular calcium signals from the epicardial surface. Isolated hearts from guinea pigs and rats were loaded with a potentiometric dye (RH237) and/or calcium indicator dye (Rhod-2AM) and fluorescent signals were acquired. We used Python 3.8.5 programming language to develop the KairoSight-3 . 0 software. Cardiac maps were validated with a user-specified manual mapping approach. Results: Manual maps of action potential duration (30 or 80% repolarization), calcium transient duration (30 or 80% reuptake), action potential and calcium transient alternans were constituted to validate the accuracy of software-generated maps. Manual and software maps had high accuracy, with >97% of manual and software values falling within 10 ms of each other and >75% within 5 ms for action potential duration and calcium transient duration measurements (n=1000-2000 pixels). Further, our software package includes additional cardiac metric measurement tools to analyze signal-to-noise ratio, conduction velocity, action potential and calcium transient alternans, and action potential-calcium transient coupling time to produce physiologically meaningful optical maps. Conclusions: KairoSight-3 . 0 has enhanced capabilities to perform measurements of cardiac electrophysiology, calcium handling, and the excitation-contraction coupling with satisfactory accuracy. Graphical Abstract Demonstrating Experimental and Data Analysis Workflow: Created with Biorender.com.

3.
Am J Physiol Heart Circ Physiol ; 324(1): H141-H154, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36487188

ABSTRACT

Highlighting the importance of sex as a biological variable, we recently reported sex differences in guinea pig in vivo electrocardiogram (ECG) measurements. However, substantial inconsistencies exist in this animal model, with conflicting reports of sex-specific differences in cardiac electrophysiology observed in vivo and in vitro. Herein, we evaluated whether sexual dimorphism persists in ex vivo preparations, using an isolated intact heart preparation. Pseudo-ECG recordings were collected in conjunction with dual optical mapping of transmembrane voltage and intracellular calcium from Langendorff-perfused hearts. In contrast to our in vivo results, we did not observe sex-specific differences in ECG parameters collected from isolated hearts. Furthermore, we observed significant age-specific differences in action potential duration (APD) and Ca2+ transient duration (CaD) during both normal sinus rhythm (NSR) and in response to dynamic pacing but only a modest sex-specific difference in CaD30. Similarly, the alternans fluctuation coefficient, conduction velocity during sinus rhythm or in response to pacing, and electrophysiology parameters (atrioventricular nodal effective refractory period, Wenckebach cycle length) were comparable between males and females. Results of our study suggest that the observed sex-specific differences in in vivo ECG parameters from guinea pigs are diminished in ex vivo isolated heart preparations, although age-specific patterns are prevalent. To assess sex as a biological variable in cardiac electrophysiology, a comprehensive approach may be necessary using both in vitro measurements from cardiomyocyte or intact heart preparations with secondary follow-up in vivo studies.NEW & NOTEWORTHY We evaluated whether the guinea pig heart has intrinsic sex-specific differences in cardiac electrophysiology. Although we observed sex-specific differences in in vivo ECGs, these differences did not persist ex vivo. Using a whole heart model, we observed similar APD, CaD, conduction velocity, and alternans susceptibility in males and females. We conclude that sex-specific differences in guinea pig cardiac electrophysiology are likely influenced by the in vivo environment and less dependent on the intrinsic electrical properties of the heart.


Subject(s)
Electrophysiologic Techniques, Cardiac , Heart Conduction System , Guinea Pigs , Female , Animals , Male , Heart/physiology , Electrocardiography , Myocytes, Cardiac/physiology , Arrhythmias, Cardiac , Action Potentials
4.
Front Physiol ; 13: 925042, 2022.
Article in English | MEDLINE | ID: mdl-35721548

ABSTRACT

Electrocardiograms (ECG) are universally used to measure the electrical activity of the heart; however, variations in recording techniques and/or subject demographics can affect ECG interpretation. In this study, we investigated variables that are likely to influence ECG metric measurements in cardiovascular research, including recording technique, use of anesthesia, and animal model characteristics. Awake limb lead ECG recordings were collected in vivo from adult guinea pigs using a platform ECG system, while recordings in anesthetized animals were performed using both a platform and needle ECG system. We report significant heterogeneities in ECG metric values that are attributed to methodological differences (e.g., ECG lead configuration, ECG recording platform, presence or absence of anesthesia) that persist even within the same cohort of animals. Further, we report that variability in animal demographics is preserved in vivo ECG recordings-with animal age serving as a significant contributor, while sex-specific influences were less pronounced. Methodological approaches and subject demographics should be fully considered when interpreting ECG values in animal models, comparing datasets between studies, or developing artificial intelligence algorithms that utilize an ECG database.

SELECTION OF CITATIONS
SEARCH DETAIL
...