Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Top Catal ; 61(5): 308-317, 2018.
Article in English | MEDLINE | ID: mdl-31258302

ABSTRACT

Au/Pd nanoparticles are important in a number of catalytic processes. Here we investigate the formation of Au-Pd bimetallic nanoparticles on TiO2(110) and their susceptibility to encapsulation using scanning tunneling microscopy, as well as Auger spectroscopy and low energy electron diffraction. Sequentially depositing 5 MLE Pd and 1 MLE Au at 298 K followed by annealing to 573 K results in a bimetallic core and Pd shell, with TiOx encapsulation on annealing to ~ 800 K. Further deposition of Au on the pinwheel type TiOx layer results in a template-assisted nucleation of Au nanoclusters, while on the zigzag type TiOx layer no preferential adsorption site of Au was observed. Increasing the Au:Pd ratio to 3 MLE Pd and 2 MLE Au results in nanoparticles that are enriched in Au at their surface, which exhibit a strong resistance towards encapsulation. Hence the degree of encapsulation of the nanoparticles during sintering can be controlled by tuning the Au:Pd ratio.

2.
Phys Chem Chem Phys ; 18(36): 25230-25240, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27711369

ABSTRACT

Scanning tunnelling microscopy (STM), low energy ion scattering spectroscopy (LEIS), X-ray photoelectron spectroscopy (XPS) and high resolution electron energy loss spectroscopy (HREELS) were applied for studying Au deposited on the Rh(111) surface. Both the deposition of Au at different substrate temperatures (400-800 K) and the effect of annealing Au deposited at 500 K were investigated. Gold deposition at 500 K, investigated by STM and LEIS methods, revealed that up to half monolayer Au the system exhibits clearly layer-by layer growth; however, above this coverage a slight deviation was identified, mainly due to kinetic and morphological effects. A continuous cover layer of Au was formed only above ∼2.5 monolayers (ML). Below this coverage, the pseudomorphic character of the Au overlayer was clearly proven by STM, but this feature disappears at 4 ML coverage. A moderate (5-10%) surface mixing of the two metals was observed only above 600 K, for both annealing the Au layer formed at lower temperatures and performing the deposition at elevated temperatures. Above 600 K a clear step-flow growth mechanism was verified. Depending on the Au coverage, a more extended mixing of the top layer and the sublayer was observed at even higher temperatures. In this case, nano-range ordering of the alloyed layer was detected by STM, where the lateral extension of the uniform commensurate (2 × 1) domains was around 4 × 4 nm2. In this case, the local intralayer mixing of Rh and Au can locally reach a value of 50%. The proposed structural model for the (2 × 1) alloy phase was also corroborated by HREELS investigations on CO adsorption.

3.
Langmuir ; 26(21): 16312-24, 2010 Nov 02.
Article in English | MEDLINE | ID: mdl-20973580

ABSTRACT

Gold based model systems exhibiting the structural versatility of nanoparticle ensembles and being accessible for surface spectroscopic investigations are expected to provide new information about the adsorption of carbon monoxide, a key process influencing the CO oxidation activity of this noble metal in nanoparticulate form. Accordingly, in the present work the interaction of CO is studied with an ion bombardment modified Au(111) surface by means of a combination of photoelectron spectroscopy (XPS and UPS), sum frequency generation vibrational spectroscopy (SFG), and scanning tunneling microscopy (STM). While no adsorption was found on intact Au(111), data collected on the ion bombarded surface at cryogenic temperatures indicated the presence of stable CO adsorbates below 190 K. A quantitative evaluation of the C 1s XPS spectra and the surface morphology explored by STM revealed that the step edge sites created by ion bombardment are responsible for CO adsorption. The identification of the CO binding sites was confirmed by density functional theory (DFT) calculations. Annealing experiments up to room temperature showed that at temperatures above 190 K unstable adsorbates are formed on the surface under dynamic exposure conditions that disappeared immediately when gaseous CO was removed from the system. Spectroscopic data as well as STM records revealed that prolonged CO exposure at higher pressures of up to 1 mbar around room temperature facilitates massive atomic movements on the roughened surface, leading to its strong reordering toward the structure of the intact Au(111) surface, accompanied by the loss of the CO binding capacity.


Subject(s)
Carbon Monoxide/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Adsorption , Ions/chemistry , Molecular Dynamics Simulation , Oxidation-Reduction , Particle Size , Pressure , Spectrum Analysis , Surface Properties
4.
Nanotechnology ; 17(16): 4112-6, 2006 Aug 28.
Article in English | MEDLINE | ID: mdl-21727546

ABSTRACT

Density functional theory (DFT) total-energy calculations have been used to investigate the effect of potassium on the adsorption geometry of gold on a TiO(2)(110)- 1 × 1 surface. The gold prefers to sit between the two bridge oxygen atoms above the sixfold titanium atom. The addition of potassium significantly affects the bonding geometry of the gold. Potassium displaces gold from the bridge site and causes its migration to the top of the fivefold titanium atom. Our calculations suggest that potassium is bonded to the bridging oxygen atoms, and to the sixfold titanium atom as well as to gold. This excludes the formation of a K(2)O-like compound at the surface.

5.
Langmuir ; 21(10): 4562-70, 2005 May 10.
Article in English | MEDLINE | ID: mdl-16032873

ABSTRACT

The properties of Mo ultrathin films deposited on a TiO2(110) surface were investigated by scanning tunneling microscopy (STM) and spectroscopy (STS), as well as by Auger electron spectroscopy (AES). The substrate exhibited mainly large (1 x 1) terraces decorated by additional [001] rows (missing or added 1D structures) of reduced TiO(x) phases. Only a few percent of the surface exhibited a cross-linked (1 x 2) arrangement. The deposition of Mo layers at room temperature with a rate of approximately 0.4 monolayer/ min resulted in nanoclusters of 1-2 nm with a low-profile shape (2D-like). Preferential decoration of the atomic steps was not found; at the same time, the 1D defect sites of missing or added rows on the (110) terraces were characteristically decorated by larger Mo nanocrystallites. This behavior indicates that the mobility of Mo atoms is higher on the more reduced regions of the substrate. The high dispersion of the Mo adlayer changed only slightly on annealing up to 700 K; in the range of 900-1050 K, however, a significant increase of the particle size accompanied by splitting of the TiO2(110) terraces was observed. This behavior may be explained by the partial oxidation of the supported Mo (accompanied by the reduction of the substrate) into tetragonal crystallites oriented and slightly elongated in the [001] or [110] direction of the TiO2(110) support. STS measurements indicated that the crystallites or the support/crystallite interface formed above 900 K possesses a wide band gap. The annealing above 1050 K resulted in the disappearance of Mo from the TiO2(110) surface, which may be explained by the formation and sublimation of MoO3 species at the perimeter of the nanoparticles. The change of AES signal intensities for O(KLL) and Mo(MNN) as a function of the annealing temperature also supports this mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...