Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 10(7): e0134392, 2015.
Article in English | MEDLINE | ID: mdl-26222724

ABSTRACT

Diabetic retinopathy features inflammation as well as injury to glial cells and the microvasculature, which are influenced by hypertension and overactivity of the renin-angiotensin system. FT011 is an anti-inflammatory and anti-fibrotic agent that has been reported to attenuate organ damage in diabetic rats with cardiomyopathy and nephropathy. However, the potential therapeutic utility of FT011 for diabetic retinopathy has not been evaluated. We hypothesized that FT011 would attenuate retinopathy in diabetic Ren-2 rats, which exhibit hypertension due to an overactive extra-renal renin-angiotensin system. Diabetic rats were studied for 8 and 32 weeks and received intravitreal injections of FT011 (50 µM) or vehicle (0.9% NaCl). Comparisons were to age-matched controls. In the 8-week study, retinal inflammation was examined by quantitating vascular leukocyte adherence, microglial/macrophage density and the expression of inflammatory mediators. Macroglial Müller cells, which exhibit a pro-inflammatory and pro-angiogenic phenotype in diabetes, were evaluated in the 8-week study as well as in culture following exposure to hyperglycaemia and FT011 (10, 30, 100 µM) for 72 hours. In the 32-week study, severe retinal vasculopathy was examined by quantitating acellular capillaries and extracellular matrix proteins. In diabetic rats, FT011 reduced retinal leukostasis, microglial density and mRNA levels of intercellular adhesion molecule-1 (ICAM-1). In Müller cells, FT011 reduced diabetes-induced gliosis and vascular endothelial growth factor (VEGF) immunolabeling and the hyperglycaemic-induced increase in ICAM-1, monocyte chemoattractant protein-1, CCL20, cytokine-induced neutrophil chemoattractant-1, VEGF and IL-6. Late intervention with FT011 reduced acellular capillaries and the elevated mRNA levels of collagen IV and fibronectin in diabetic rats. In conclusion, the protective effects of FT011 in cardiorenal disease extend to key elements of diabetic retinopathy and highlight its potential as a treatment approach.


Subject(s)
Caffeic Acids/pharmacology , Diabetic Retinopathy/drug therapy , Gliosis/drug therapy , Inflammation/drug therapy , Protective Agents/pharmacology , ortho-Aminobenzoates/pharmacology , Animals , Chemokine CCL2/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetic Retinopathy/metabolism , Disease Models, Animal , Ependymoglial Cells , Female , Gliosis/metabolism , Inflammation/metabolism , Intercellular Adhesion Molecule-1 , Interleukin-6/metabolism , Leukostasis/drug therapy , Leukostasis/metabolism , Rats , Renin-Angiotensin System/drug effects , Retina/drug effects , Retina/metabolism , Retinal Vessels/drug effects , Retinal Vessels/metabolism , Vascular Endothelial Growth Factor A
2.
Clin Exp Pharmacol Physiol ; 42(5): 537-48, 2015 May.
Article in English | MEDLINE | ID: mdl-25707593

ABSTRACT

Angiogenesis and inflammation are causative factors in the development of neovascular retinopathies. These processes involve the retinal endothelium and the retinal immune cells, microglia. The renin-angiotensin system contributes to retinal injury via the actions of the type 1 angiotensin receptor (AT1R). However, it has been suggested that prorenin, the initiator of the renin-angiotensin system cascade, influences retinal injury independently from the AT1R. We evaluated whether prorenin induced a pro-angiogenic and pro-inflammatory response in retinal endothelial cells and a pro-inflammatory phenotype in retinal microglia. Primary cultures of retinal endothelial cells and microglia were studied. Rat recombinant prorenin (2 nmol/L) stimulated the proliferation and tubulogenesis of retinal endothelial cells; it increased the levels of pro-angiogenic factors, vascular endothelial growth factor, angiopoietin-1, and tyrosine kinase with immunoglobulin and epidermal growth factor homology domains, and pro-inflammatory factors, intercellular adhesion molecule-1 and monocyte chemoattractant protein-1, relative to the controls. The messenger RNA levels of the (pro)renin receptor were also increased. These effects occurred in the presence of the AT1R blocker candesartan (10 µmol/L) and the renin inhibitor aliskiren (10 µmol/L). Microglia, which express the (pro)renin receptor, elicited an activated phenotype when exposed to prorenin, which was characterized by increased levels of intercellular adhesion molecule-1, monocyte chemoattractant protein-1, tumour necrosis factor-α, interleukin-6, and interleukin-1ß and by decreased levels of interleukin-10 and arginase-1 relative to controls. Candesartan did not influence the effects of prorenin on retinal microglia. In conclusion, prorenin has distinct pro-angiogenic and pro-inflammatory effects on retinal cells that are independent of the AT1R, indicating the potential importance of prorenin in retinopathy.


Subject(s)
Endothelial Cells/drug effects , Microglia/drug effects , Neovascularization, Physiologic/drug effects , Phenotype , Renin/pharmacology , Retina/cytology , Retina/drug effects , Animals , Cattle , Gene Expression Regulation/drug effects , Inflammation/metabolism , Inflammation/pathology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Cell Surface/metabolism , Prorenin Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...