Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
G3 (Bethesda) ; 13(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37740775

ABSTRACT

Lettuce (Lactuca sativa L.) is a leafy vegetable crop with ongoing breeding efforts related to quality, resilience, and innovative production systems. To breed resilient and resistant lettuce in the future, valuable genetic variation found in close relatives could be further exploited. Lactuca virosa (2x = 2n = 18), a wild relative assigned to the tertiary lettuce gene pool, has a much larger genome (3.7 Gbp) than Lactuca sativa (2.5 Gbp). It has been used in interspecific crosses and is a donor to modern crisphead lettuce cultivars. Here, we present a de novo reference assembly of L. virosa with high continuity and complete gene space. This assembly facilitated comparisons to the genome of L. sativa and to that of the wild species L. saligna, a representative of the secondary lettuce gene pool. To assess the diversity in gene content, we classified the genes of the 3 Lactuca species as core, accessory, and unique. In addition, we identified 3 interspecific chromosomal inversions compared to L. sativa, which each may cause recombination suppression and thus hamper future introgression breeding. Using 3-way comparisons in both reference-based and reference-free manners, we show that the proliferation of long-terminal repeat elements has driven the genome expansion of L. virosa. Further, we performed a genome-wide comparison of immune genes, nucleotide-binding leucine-rich repeat, and receptor-like kinases among Lactuca spp. and indicated the evolutionary patterns and mechanisms behind their expansions. These genome analyses greatly facilitate the understanding of genetic variation in L. virosa, which is beneficial for the breeding of improved lettuce varieties.


Subject(s)
Lactuca , Plant Breeding , Lactuca/genetics , Genes, Plant
2.
Front Plant Sci ; 14: 1198909, 2023.
Article in English | MEDLINE | ID: mdl-37457342

ABSTRACT

The Asteraceae is the largest angiosperm family with more than 25,000 species. Individual studies have shown that MADS-box and TCP transcription factors are regulators of the development and symmetry of flowers, contributing to their iconic flower-head (capitulum) and floret. However, a systematic study of MADS-box and TCP genes across the Asteraceae is lacking. We performed a comparative analysis of genome sequences of 33 angiosperm species including our de novo assembly of diploid sexual dandelion (Taraxacum officinale) and 11 other Asteraceae to investigate the lineage-specific evolution of MADS-box and TCP genes in the Asteraceae. We compared the phylogenomic results of MADS-box and TCP genes with their expression in T. officinale floral tissues at different developmental stages to demonstrate the regulation of genes with Asteraceae-specific attributes. Here, we show that MADS-box MIKC c and TCP-CYCLOIDEA (CYC) genes have expanded in the Asteraceae. The phylogenomic analysis identified AGAMOUS-like (AG-like: SEEDSTICK [STK]-like), SEPALATA-like (SEP3-like), and TCP-PROLIFERATING CELL FACTOR (PCF)-like copies with lineage-specific genomic contexts in the Asteraceae, Cichorioideae, or dandelion. Different expression patterns of some of these gene copies suggest functional divergence. We also confirm the presence and revisit the evolutionary history of previously named "Asteraceae-Specific MADS-box genes (AS-MADS)." Specifically, we identify non-Asteraceae homologs, indicating a more ancient origin of this gene clade. Syntenic relationships support that AS-MADS is paralogous to FLOWERING LOCUS C (FLC) as demonstrated by the shared ancient duplication of FLC and SEP3.

3.
Plant J ; 115(1): 108-126, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36987839

ABSTRACT

Lactuca saligna L. is a wild relative of cultivated lettuce (Lactuca sativa L.), with which it is partially interfertile. Hybrid progeny suffer from hybrid incompatibility (HI), resulting in reduced fertility and distorted transmission ratios. Lactuca saligna displays broad-spectrum resistance against lettuce downy mildew caused by Bremia lactucae Regel and is considered a non-host species. This phenomenon of resistance in L. saligna is called non-host resistance (NHR). One possible mechanism behind this NHR is through the plant-pathogen interaction triggered by pathogen recognition receptors, including nucleotide-binding leucine-rich repeat (NLR) proteins and receptor-like kinases (RLKs). We report a chromosome-level genome assembly of L. saligna (accession CGN05327), leading to the identification of two large paracentric inversions (>50 Mb) between L. saligna and L. sativa. Genome-wide searches delineated the major resistance clusters as regions enriched in NLRs and RLKs. Three of the enriched regions co-locate with previously identified NHR intervals. RNA-seq analysis of Bremia-infected lettuce identified several differentially expressed RLKs in NHR regions. Three tandem wall-associated kinase-encoding genes (WAKs) in the NHR8 interval display particularly high expression changes at an early stage of infection. We propose RLKs as strong candidates for determinants of the NHR phenotype of L. saligna.


Subject(s)
Lactuca , Oomycetes , Lactuca/genetics , Genome , Phenotype , Plant Diseases/genetics
4.
Front Plant Sci ; 13: 1012688, 2022.
Article in English | MEDLINE | ID: mdl-36340405

ABSTRACT

The fungus Fusarium oxysporum is infamous for its devastating effects on economically important crops worldwide. F. oxysporum isolates are grouped into formae speciales based on their ability to cause disease on different hosts. Assigning F. oxysporum strains to formae speciales using non-experimental procedures has proven to be challenging due to their genetic heterogeneity and polyphyletic nature. However, genetically diverse isolates of the same forma specialis encode similar repertoires of effectors, proteins that are secreted by the fungus and contribute to the establishment of compatibility with the host. Based on this observation, we previously designed the F. oxysporum Effector Clustering (FoEC) pipeline which is able to classify F. oxysporum strains by forma specialis based on hierarchical clustering of the presence of predicted putative effector sequences, solely using genome assemblies as input. Here we present the updated FoEC2 pipeline which is more user friendly, customizable and, due to multithreading, has improved scalability. It is designed as a Snakemake pipeline and incorporates a new interactive visualization app. We showcase FoEC2 by clustering 537 publicly available F. oxysporum genomes and further analysis of putative effector families as multiple sequence alignments. We confirm classification of isolates into formae speciales and are able to further identify their subtypes. The pipeline is available on github: https://github.com/pvdam3/FoEC2.

5.
Bioinformatics ; 38(18): 4403-4405, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35861394

ABSTRACT

SUMMARY: The ever-increasing number of sequenced genomes necessitates the development of pangenomic approaches for comparative genomics. Introduced in 2016, PanTools is a platform that allows pangenome construction, homology grouping and pangenomic read mapping. The use of graph database technology makes PanTools versatile, applicable from small viral genomes like SARS-CoV-2 up to large plant or animal genomes like tomato or human. Here, we present our third major update to PanTools that enables the integration of functional annotations and provides both gene-level analyses and phylogenetics. AVAILABILITY AND IMPLEMENTATION: PanTools is implemented in Java 8 and released under the GNU GPLv3 license. Software and documentation are available at https://git.wur.nl/bioinformatics/pantools. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Phylogeny , SARS-CoV-2/genetics , Software , Genome, Viral
6.
BMC Genomics ; 22(1): 265, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33849459

ABSTRACT

BACKGROUND: Bacterial plant pathogens of the Pectobacterium genus are responsible for a wide spectrum of diseases in plants, including important crops such as potato, tomato, lettuce, and banana. Investigation of the genetic diversity underlying virulence and host specificity can be performed at genome level by using a comprehensive comparative approach called pangenomics. A pangenomic approach, using newly developed functionalities in PanTools, was applied to analyze the complex phylogeny of the Pectobacterium genus. We specifically used the pangenome to investigate genetic differences between virulent and avirulent strains of P. brasiliense, a potato blackleg causing species dominantly present in Western Europe. RESULTS: Here we generated a multilevel pangenome for Pectobacterium, comprising 197 strains across 19 species, including type strains, with a focus on P. brasiliense. The extensive phylogenetic analysis of the Pectobacterium genus showed robust distinct clades, with most detail provided by 452,388 parsimony-informative single-nucleotide polymorphisms identified in single-copy orthologs. The average Pectobacterium genome consists of 47% core genes, 1% unique genes, and 52% accessory genes. Using the pangenome, we zoomed in on differences between virulent and avirulent P. brasiliense strains and identified 86 genes associated to virulent strains. We found that the organization of genes is highly structured and linked with gene conservation, function, and transcriptional orientation. CONCLUSION: The pangenome analysis demonstrates that evolution in Pectobacteria is a highly dynamic process, including gene acquisitions partly in clusters, genome rearrangements, and loss of genes. Pectobacterium species are typically not characterized by a set of species-specific genes, but instead present themselves using new gene combinations from the shared gene pool. A multilevel pangenomic approach, fusing DNA, protein, biological function, taxonomic group, and phenotypes, facilitates studies in a flexible taxonomic context.


Subject(s)
Pectobacterium , Solanum tuberosum , Europe , Gene Pool , Pectobacterium/genetics , Phylogeny , Plant Diseases , Solanum tuberosum/genetics
7.
PLoS Genet ; 15(8): e1008373, 2019 08.
Article in English | MEDLINE | ID: mdl-31469821

ABSTRACT

Plant mitochondrial genomes are usually assembled and displayed as circular maps based on the widely-held view across the broad community of life scientists that circular genome-sized molecules are the primary form of plant mitochondrial DNA, despite the understanding by plant mitochondrial researchers that this is an inaccurate and outdated concept. Many plant mitochondrial genomes have one or more pairs of large repeats that can act as sites for inter- or intramolecular recombination, leading to multiple alternative arrangements (isoforms). Most mitochondrial genomes have been assembled using methods unable to capture the complete spectrum of isoforms within a species, leading to an incomplete inference of their structure and recombinational activity. To document and investigate underlying reasons for structural diversity in plant mitochondrial DNA, we used long-read (PacBio) and short-read (Illumina) sequencing data to assemble and compare mitochondrial genomes of domesticated (Lactuca sativa) and wild (L. saligna and L. serriola) lettuce species. We characterized a comprehensive, complex set of isoforms within each species and compared genome structures between species. Physical analysis of L. sativa mtDNA molecules by fluorescence microscopy revealed a variety of linear, branched, and circular structures. The mitochondrial genomes for L. sativa and L. serriola were identical in sequence and arrangement and differed substantially from L. saligna, indicating that the mitochondrial genome structure did not change during domestication. From the isoforms in our data, we infer that recombination occurs at repeats of all sizes at variable frequencies. The differences in genome structure between L. saligna and the two other Lactuca species can be largely explained by rare recombination events that rearranged the structure. Our data demonstrate that representations of plant mitochondrial genomes as simple, circular molecules are not accurate descriptions of their true nature and that in reality plant mitochondrial DNA is a complex, dynamic mixture of forms.


Subject(s)
Chromosome Mapping/methods , Genome, Plant/genetics , Mitochondria/genetics , DNA, Mitochondrial/genetics , DNA, Plant/genetics , Genes, Plant/genetics , Genome, Mitochondrial/genetics , Lactuca/genetics , Recombination, Genetic/genetics , Sequence Analysis, DNA/methods
8.
Genome Biol Evol ; 9(9): 2444-2460, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28957460

ABSTRACT

Lycopodiophyta-consisting of three orders, Lycopodiales, Isoetales and Selaginellales, with different types of shoot apical meristems (SAMs)-form the earliest branch among the extant vascular plants. They represent a sister group to all other vascular plants, from which they differ in that their leaves are microphylls-that is, leaves with a single, unbranched vein, emerging from the protostele without a leaf gap-not megaphylls. All leaves represent determinate organs originating on the flanks of indeterminate SAMs. Thus, leaf formation requires the suppression of indeterminacy, that is, of KNOX transcription factors. In seed plants, this is mediated by different groups of transcription factors including ARP and YABBY.We generated a shoot tip transcriptome of Huperzia selago (Lycopodiales) to examine the genes involved in leaf formation. Our H. selago transcriptome does not contain any ARP homolog, although transcriptomes of Selaginella spp. do. Surprisingly, we discovered a YABBY homolog, although these transcription factors were assumed to have evolved only in seed plants.The existence of a YABBY homolog in H. selago suggests that YABBY evolved already in the common ancestor of the vascular plants, and subsequently was lost in some lineages like Selaginellales, whereas ARP may have been lost in Lycopodiales. The presence of YABBY in the common ancestor of vascular plants would also support the hypothesis that this common ancestor had a simplex SAM. Furthermore, a comparison of the expression patterns of ARP in shoot tips of Selaginella kraussiana (Harrison CJ, etal. 2005. Independent recruitment of a conserved developmental mechanism during leaf evolution. Nature 434(7032):509-514.) and YABBY in shoot tips of H. selago implies that the development of microphylls, unlike megaphylls, does not seem to depend on the combined activities of ARP and YABBY. Altogether, our data show that Lycopodiophyta are a diverse group; so, in order to understand the role of Lycopodiophyta in evolution, representatives of Lycopodiales, Selaginellales, as well as of Isoetales, have to be examined.


Subject(s)
Evolution, Molecular , Huperzia/genetics , Plant Leaves/genetics , Plant Shoots/genetics , Transcriptome , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Huperzia/growth & development , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Shoots/growth & development , Plant Shoots/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
9.
Plant Cell ; 28(12): 2937-2951, 2016 12.
Article in English | MEDLINE | ID: mdl-27920338

ABSTRACT

Organ formation in animals and plants relies on precise control of cell state transitions to turn stem cell daughters into fully differentiated cells. In plants, cells cannot rearrange due to shared cell walls. Thus, differentiation progression and the accompanying cell expansion must be tightly coordinated across tissues. PLETHORA (PLT) transcription factor gradients are unique in their ability to guide the progression of cell differentiation at different positions in the growing Arabidopsis thaliana root, which contrasts with well-described transcription factor gradients in animals specifying distinct cell fates within an essentially static context. To understand the output of the PLT gradient, we studied the gene set transcriptionally controlled by PLTs. Our work reveals how the PLT gradient can regulate cell state by region-specific induction of cell proliferation genes and repression of differentiation. Moreover, PLT targets include major patterning genes and autoregulatory feedback components, enforcing their role as master regulators of organ development.


Subject(s)
Arabidopsis/cytology , Arabidopsis/genetics , Cell Differentiation/genetics , Gene Expression Regulation, Plant , Gene Regulatory Networks/genetics , Plant Roots/cytology , Plant Roots/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
10.
BMC Evol Biol ; 15: 44, 2015 Mar 13.
Article in English | MEDLINE | ID: mdl-25881027

ABSTRACT

BACKGROUND: Polycomb repressive complex 1 (PRC1) is an essential protein complex for plant development. It catalyzes ubiquitination of histone H2A that is an important part of the transcription repression machinery. Absence of PRC1 subunits in Arabidopsis thaliana plants causes severe developmental defects. Many aspects of the plant PRC1 are elusive, including its origin and phylogenetic distribution. RESULTS: We established the evolutionary history of the plant PRC1 subunits (LHP1, Ring1a-b, Bmi1a-c, EMF1, and VRN1), enabled by sensitive phylogenetic methods and newly sequenced plant genomes from previously unsampled taxonomic groups. We showed that all PRC1 core subunits exist in gymnosperms, earlier than previously thought, and that VRN1 is a recent addition, found exclusively in eudicots. The retention of individual subunits in chlorophytes, mosses, lycophytes and monilophytes indicates that they can moonlight as part of other complexes or processes. Moreover, we showed that most PRC1 subunits underwent a complex, duplication-rich history that differs significantly between Brassicaceae and other eudicots. CONCLUSIONS: PRC1 existed in the last common ancestor of seed plants where it likely played an important regulatory role, aiding their radiation. The presence of LHP1, Ring1 and Bmi1 in mosses, lycophytes and monilophytes also suggests the presence of a primitive yet functional PRC1.


Subject(s)
Evolution, Molecular , Plants/genetics , Polycomb-Group Proteins/genetics , Animals , Gene Duplication , Phylogeny , Plants/classification , Polycomb-Group Proteins/chemistry , Polycomb-Group Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination
11.
Plant J ; 81(2): 210-22, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25376907

ABSTRACT

Arabidopsis downy mildew resistant 6 (dmr6) mutants have lost their susceptibility to the downy mildew Hyaloperonospora arabidopsidis. Here we show that dmr6 is also resistant to the bacterium Pseudomonas syringae and the oomycete Phytophthora capsici. Resistance is accompanied by enhanced defense gene expression and elevated salicylic acid levels. The suppressive effect of the DMR6 oxygenase was confirmed in transgenic Arabidopsis lines overexpressing DMR6 that show enhanced susceptibility to H. arabidopsidis, P. capsici, and P. syringae. Phylogenetic analysis of the superfamily of 2-oxoglutarate Fe(II)-dependent oxygenases revealed a subgroup of DMR6-LIKE OXYGENASEs (DLOs). Within Arabidopsis, DMR6 is most closely related to DLO1 and DLO2. Overexpression of DLO1 and DLO2 in the dmr6 mutant restored the susceptibility to downy mildew indicating that DLOs negatively affect defense, similar to DMR6. DLO1, but not DLO2, is co-expressed with DMR6, showing strong activation during pathogen attack and following salicylic acid treatment. DMR6 and DLO1 differ in their spatial expression pattern in downy mildew-infected Arabidopsis leaves; DMR6 is mostly expressed in cells that are in contact with hyphae and haustoria of H. arabidopsidis, while DLO1 is expressed mainly in the vascular tissues near infection sites. Strikingly, the dmr6-3_dlo1 double mutant, that is completely resistant to H. arabidopsidis, showed a strong growth reduction that was associated with high levels of salicylic acid. We conclude that DMR6 and DLO1 redundantly suppress plant immunity, but also have distinct activities based on their differential localization of expression.


Subject(s)
Arabidopsis/metabolism , Arabidopsis/microbiology , Plant Diseases/microbiology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Oomycetes/pathogenicity , Plant Diseases/genetics , Plant Immunity/genetics , Plant Immunity/physiology , Pseudomonas syringae/pathogenicity
12.
Genome Biol Evol ; 6(3): 572-9, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24567304

ABSTRACT

The histone modification H3K27me3 is involved in repression of transcription and plays a crucial role in developmental transitions in both animals and plants. It is deposited by PRC2 (Polycomb repressive complex 2), a conserved protein complex. In Arabidopsis thaliana, H3K27me3 is found at 15% of all genes. These tend to encode transcription factors and other regulators important for development. However, it is not known how PRC2 is recruited to target loci nor how this set of target genes arose during Arabidopsis evolution. To resolve the latter, we integrated A. thaliana gene families with five independent genome-wide H3K27me3 data sets. Gene families were either significantly enriched or depleted of H3K27me3, showing a strong impact of shared ancestry to H3K27me3 distribution. To quantify this, we performed ancestral state reconstruction of H3K27me3 on phylogenetic trees of gene families. The set of H3K27me3-marked genes changed less than expected by chance, suggesting that H3K27me3 was retained after gene duplication. This retention suggests that the PRC2-recruiting signal could be encoded in the DNA and also conserved among certain duplicated genes. Indeed, H3K27me3-marked genes were overrepresented among paralogs sharing conserved noncoding sequences (CNSs) that are enriched with transcription factor binding sites. The association of upstream CNSs with H3K27me3-marked genes represents the first genome-wide connection between H3K27me3 and potential regulatory elements in plants. Thus, we propose that CNSs likely function as part of the PRC2 recruitment in plants.


Subject(s)
Arabidopsis/genetics , Gene Duplication , Gene Expression Regulation, Plant , Genes, Plant , Histones/genetics , Conserved Sequence/genetics , Multigene Family , Phylogeny , Protein Binding , Transcription Factors/genetics , Transcription Factors/metabolism
13.
Mol Cell Proteomics ; 12(5): 1158-69, 2013 May.
Article in English | MEDLINE | ID: mdl-23328941

ABSTRACT

Protein phosphorylation is instrumental to early signaling events. Studying system-wide phosphorylation in relation to processes under investigation requires a quantitative proteomics approach. In Arabidopsis, auxin application can induce pericycle cell divisions and lateral root formation. Initiation of lateral root formation requires transcriptional reprogramming following auxin-mediated degradation of transcriptional repressors. The immediate early signaling events prior to this derepression are virtually uncharacterized. To identify the signal molecules responding to auxin application, we used a lateral root-inducible system that was previously developed to trigger synchronous division of pericycle cells. To identify and quantify the early signaling events following this induction, we combined (15)N-based metabolic labeling and phosphopeptide enrichment and applied a mass spectrometry-based approach. In total, 3068 phosphopeptides were identified from auxin-treated root tissue. This root proteome dataset contains largely phosphopeptides not previously reported and represents one of the largest quantitative phosphoprotein datasets from Arabidopsis to date. Key proteins responding to auxin treatment included the multidrug resistance-like and PIN2 auxin carriers, auxin response factor2 (ARF2), suppressor of auxin resistance 3 (SAR3), and sorting nexin1 (SNX1). Mutational analysis of serine 16 of SNX1 showed that overexpression of the mutated forms of SNX1 led to retarded growth and reduction of lateral root formation due to the reduced outgrowth of the primordium, showing proof of principle for our approach.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Indoleacetic Acids/pharmacology , Plant Growth Regulators/pharmacology , Plant Roots/metabolism , Proteome/metabolism , Sorting Nexins/metabolism , Amino Acid Substitution , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Gene Expression , Isotope Labeling , Mutagenesis, Site-Directed , Phosphoproteins/metabolism , Phosphorylation , Plant Roots/growth & development , Protein Processing, Post-Translational , Proteomics , Seedlings/growth & development , Seedlings/metabolism , Sorting Nexins/genetics
14.
Genome Biol ; 13(10): R94, 2012 Oct 03.
Article in English | MEDLINE | ID: mdl-23034476

ABSTRACT

BACKGROUND: Following gene duplication, retained paralogs undergo functional divergence, which is reflected in changes in DNA sequence and expression patterns. The extent of divergence is influenced by several factors, including protein function. We examine whether an epigenetic modification, trimethylation of histone H3 at lysine 27 (H3K27me3), could be a factor in the evolution of expression patterns after gene duplication. Whereas in animals this repressive mark for transcription is deposited on long regions of DNA, in plants its localization is gene-specific. Because of this and a well-annotated recent whole-genome duplication, Arabidopsis thaliana is uniquely suited for studying the potential association of H3K27me3 with the evolutionary fate of genes. RESULTS: Paralogous pairs with H3K27me3 show the highest coding sequence divergence, which can be explained by their low expression levels. Interestingly, they also show the highest similarity in expression patterns and upstream regulatory regions, while paralogous pairs where only one gene is an H3K27me3 target show the highest divergence in expression patterns and upstream regulatory sequence. These trends in divergence of expression and upstream regions are especially pronounced for transcription factors. CONCLUSIONS: After duplication, a histone modification can be associated with a particular fate of paralogs: H3K27me3 is linked to lower expression divergence yet higher coding sequence divergence. Our results show that H3K27me3 constrains expression divergence after duplication. Moreover, its association with higher conservation of upstream regions provides a potential mechanism for the conserved H3K27me3 targeting of the paralogs.


Subject(s)
Arabidopsis/genetics , Epigenomics/methods , Evolution, Molecular , Histones/metabolism , Plant Proteins/metabolism , DNA Methylation , Epigenesis, Genetic , Gene Duplication , Gene Expression Regulation, Plant , Genome, Plant
15.
J Proteome Res ; 11(1): 438-48, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22074104

ABSTRACT

Tyrosine (Tyr) phosphorylation plays an essential role in signaling in animal systems. However, a few studies have also reported Tyr phosphorylation in plants, but the relative contribution of tyrosine phosphorylation to plant signal transduction has remained an open question. We present an approach to selectively measure and quantify Tyr phosphorylation in plant cells, which can also be applied to whole plants. We combined a (15)N stable isotope metabolic labeling strategy with an immuno-affinity purification using phospho-tyrosine (pY) specific antibodies. This single enrichment strategy was sufficient to reproducibly identify and quantify pY containing peptides from total plant cell extract in a single LC-MS/MS run. We succeeded in identifying 149 unique pY peptides originating from 135 proteins, including a large set of different protein kinases and several receptor-like kinases. We used flagellin perception by Arabidopsis cells, a model system for pathogen triggered immune (PTI) signaling, to test our approach. We reproducibly quantified 23 pY peptides in 2 inversely labeled biological replicates identifying 11 differentially phosphorylated proteins. These include a set of 3 well-characterized flagellin responsive MAP kinases and 4 novel MAP kinases. With this targeted approach, we elucidate a new level of complexity in flagellin-induced MAP kinase activation.


Subject(s)
Arabidopsis Proteins/metabolism , Phosphoproteins/metabolism , Phosphotyrosine/metabolism , Proteome/metabolism , Signal Transduction , Amino Acid Sequence , Arabidopsis/cytology , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/isolation & purification , Cell Culture Techniques , Chromatography, Affinity , Conserved Sequence , Flagellin/pharmacology , Molecular Sequence Annotation , Molecular Sequence Data , Peptide Fragments/chemistry , Peptide Mapping , Phosphoproteins/chemistry , Phosphoproteins/isolation & purification , Phosphotyrosine/isolation & purification , Plant Leaves/drug effects , Plant Leaves/metabolism , Proteome/chemistry , Proteome/isolation & purification , Proteomics
16.
J Exp Bot ; 63(9): 3379-90, 2012 May.
Article in English | MEDLINE | ID: mdl-22058405

ABSTRACT

How plants relate their requirements for energy with the reducing power necessary to fuel growth is not understood. The activated glucose forms and NADPH are key precursors in pathways yielding, respectively, energy and reducing power for anabolic metabolism. Moreover, they are substrates or allosteric regulators of trehalose-phosphate synthase (TPS1) in fungi and probably also in plants. TPS1 synthesizes the signalling metabolite trehalose-6-phosphate (T6P) and, therefore, has the potential to relate reducing power with energy metabolism to fuel growth. A working model is discussed where trehalose-6-phosphate (T6P) inhibition of SnRK1 is part of a growth-regulating loop in young and metabolically active heterotrophic plant tissues. SnRK1 is the Snf1 Related Kinase 1 and the plant homologue of the AMP-dependent protein kinase of animals, a central energy gauge. T6P accumulation in response to high sucrose levels in a cell inhibits SnRK1 activity, thus promoting anabolic processes and growth. When T6P levels drop due to low glucose-6-phosphate, uridine-diphosphoglucose, and altered NADPH or due to restricted TPS1 activity, active SnRK1 promotes catabolic processes required to respond to energy and carbon deprivation. The model explains why too little or too much T6P has been found to be growth inhibitory: Arabidopsis thaliana embryos and seedlings without TPS1 are growth arrested and Arabidopsis seedlings accumulating T6P on a trehalose medium are growth arrested. Finally, the insight gained with respect to the possible role of T6P metabolism, where it is known to alter developmental and environmental responses of plants, is discussed.


Subject(s)
Plant Development , Plants/metabolism , Sugar Phosphates/metabolism , Trehalose/analogs & derivatives , Animals , Arabidopsis/growth & development , Arabidopsis/metabolism , Environment , Glucose/metabolism , Models, Biological , Trehalose/metabolism
17.
Plant Mol Biol ; 76(1-2): 69-83, 2011 May.
Article in English | MEDLINE | ID: mdl-21431781

ABSTRACT

Leucine-rich repeat receptor-like protein kinases (LRR RLKs) represent the largest group of Arabidopsis RLKs with approximately 235 members. A minority of these LRR RLKs have been assigned to diverse roles in development, pathogen resistance and hormone perception. Using a reverse genetics approach, a collection of homozygous T-DNA insertion lines for 69 root expressed LRR RLK genes was screened for root developmental defects and altered response after exposure to environmental, hormonal/chemical and abiotic stress. The obtained data demonstrate that LRR RLKs play a role in a wide variety of signal transduction pathways related to hormone and abiotic stress responses. The described collection of T-DNA insertion mutants provides a valuable tool for future research into the function of LRR RLK genes.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Plant Roots/enzymology , Protein Kinases/metabolism , Proteins/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cluster Analysis , DNA, Bacterial/genetics , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Enzymologic/radiation effects , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/radiation effects , Indoleacetic Acids/pharmacology , Leucine-Rich Repeat Proteins , Light , Mannitol/pharmacology , Mutagenesis, Insertional , Mutation , Oligonucleotide Array Sequence Analysis , Phylogeny , Plant Growth Regulators/pharmacology , Plant Roots/genetics , Protein Kinases/classification , Protein Kinases/genetics , Proteins/classification , Proteins/genetics , Signal Transduction/drug effects , Signal Transduction/radiation effects , Sodium Chloride/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...