Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Bioorg Med Chem Lett ; 104: 129712, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38521177

ABSTRACT

We developed a model small-molecule drug conjugate (SMDC) that employed doxorubicin as a representative chemotherapeutic targeted to the cell membrane biomarker PSMA (prostate-specific membrane antigen) expressed on prostate cancer cells. The strategy capitalized on the clatherin-mediated internalization of PSMA to facilitate the selective uptake and release of doxorubicin in the target cells. The SMDC was prepared and assessed for binding kinetics, plasma stability, cell toxicity, and specificity towards PSMA expressing prostate cancer cell lines. We observed high affinity of the SMDC for PSMA (IC50 5 nM) with irreversible binding, as well as specific effectiveness against PSMA(+) cells. These findings validated the strategy for a small molecule-based approach in targeted cancer therapy.


Subject(s)
Antigens, Surface , Doxorubicin , Glutamate Carboxypeptidase II , Prostatic Neoplasms , Humans , Male , Antigens, Surface/metabolism , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Delivery Systems , Glutamate Carboxypeptidase II/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism
2.
Nanoscale ; 16(11): 5634-5652, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38440933

ABSTRACT

Prostate cancer (PCa) is the second leading cause of cancer-related deaths among men in the United States. Although early-stage treatments exhibit promising 5-year survival rates, the treatment options for advanced stage disease are constrained, with short survival benefits due to the challenges associated with effective and selective drug delivery to PCa cells. Even though targeting Prostate Specific Membrane Antigen (PSMA) has been extensively explored and is clinically employed for imaging and radio-ligand therapy, the clinical success of PSMA-based approaches for targeted delivery of chemotherapies remains elusive. In this study, we combine a generation 4 hydroxy polyamidoamine dendrimer (PD) with irreversible PSMA ligand (CTT1298) to develop a PSMA-targeted nanoplatform (PD-CTT1298) for selective intracellular delivery of potent chemotherapeutics to PCa. PD-CTT1298-Cy5 exhibits a PSMA IC50 in the nanomolar range and demonstrates selective uptake in PSMA (+) PCa cells via PSMA mediated internalization. When systemically administered in a prostate tumor xenograft mouse model, PD-CTT1298-Cy5 selectively targets PSMA (+) tumors with significantly less accumulation in PSMA (-) tumors or upon blocking of the PSMA receptors. Moreover, the dendrimer clears rapidly from the off-target organs limiting systemic side-effects. Further, the conjugation of an anti-cancer agent, cabozantinib to the PSMA-targeted dendrimer translates to a significantly enhanced anti-proliferative activity in vitro compared to the free drug. These findings highlight the potential of PD-CTT1298 nanoplatform as a versatile approach for selective delivery of high payloads of potent chemotherapeutics to PCa, where dose related systemic side-effects are a major concern.


Subject(s)
Antineoplastic Agents , Carbocyanines , Dendrimers , Prostatic Neoplasms , Animals , Humans , Male , Mice , Antigens, Surface , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Glutamate Carboxypeptidase II , Ligands , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Drug Delivery Systems
3.
Bioorg Med Chem Lett ; 101: 129657, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38360419

ABSTRACT

Herein, we report the modular synthesis and evaluation of a prostate-specific membrane antigen (PSMA) targeted small molecule drug conjugate (SMDC) carrying the chemotherapeutic agent, SN38. Due to the fluorogenic properties of SN38, payload release kinetics from the platform was observed in buffers representing the pH conditions of systemic circulation and cellular internalization. It was found that this platform is stable with minimal payload release at physiological pH with most rapid payload release observed at pH values representing the endosome complex. We confirmed selective payload release and chemotherapeutic efficacy for PSMA(+) prostate cancer cells over PSMA(-) cells. These results demonstrate that chemotherapeutic agents with limited solubility can be conjugated to a water-soluble targeting and linker platform without attenuating efficacy.


Subject(s)
Glutamate Carboxypeptidase II , Prostatic Neoplasms , Male , Humans , Cell Line, Tumor , Glutamate Carboxypeptidase II/chemistry , Antigens, Surface/chemistry , Prostatic Neoplasms/drug therapy
4.
J Chem Inf Model ; 64(3): 1030-1042, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38224368

ABSTRACT

The sulfonamide function is used extensively as a general building block in various inhibitory scaffolds and, more specifically, as a zinc-binding group (ZBG) of metalloenzyme inhibitors. Here, we provide biochemical, structural, and computational characterization of a metallopeptidase in complex with inhibitors, where the mono- and bisubstituted sulfamide functions are designed to directly engage zinc ions of a bimetallic enzyme site. Structural data showed that while monosubstituted sulfamides coordinate active-site zinc ions via the free negatively charged amino group in a canonical manner, their bisubstituted counterparts adopt an atypical binding pattern divergent from expected positioning of corresponding tetrahedral reaction intermediates. Accompanying quantum mechanics calculations revealed that electroneutrality of the sulfamide function is a major factor contributing to the markedly lower potency of bisubstituted compounds by considerably lowering their interaction energy with the enzyme. Overall, while bisubstituted uncharged sulfamide functions can bolster favorable pharmacological properties of a given inhibitor, their use as ZBGs in metalloenzyme inhibitors might be less advantageous due to their suboptimal metal-ligand properties.


Subject(s)
Metalloproteins , Protease Inhibitors , Protease Inhibitors/pharmacology , Metalloproteins/chemistry , Zinc/metabolism , Ions
5.
Bioorg Med Chem Lett ; 98: 129573, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38052377

ABSTRACT

In this study, we present a modular synthesis and evaluation of two prostate-specific membrane antigen (PSMA) targeted small molecule drug conjugates (SMDCs) incorporating the potent chemotherapeutic agent monomethyl auristatin E (MMAE). These SMDCs are distinguished by their cleavable linker modules: one utilizing the widely known valine-citrulline linker, susceptible to cleavage by cathepsin B, and the other featuring a novel acid-labile phosphoramidate-based (PhosAm) linker. Both SMDCs maintained nanomolar affinity to PSMA. Furthermore, we confirmed the selective release of the payload and observed chemotherapeutic efficacy specifically within PSMA-positive prostate cancer cells, while maintaining cell viability in PSMA-negative cells. These findings not only validate the efficacy of our approach but also highlight the potential of the innovative pH-responsive PhosAm linker. This study contributes significantly to the field and also paves the way for future advancements in targeted cancer therapy.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Prostatic Neoplasms , Humans , Male , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Citrulline , Drug Delivery Systems , Immunoconjugates/therapeutic use , Valine , Prostatic Neoplasms/drug therapy
6.
Proc Natl Acad Sci U S A ; 119(36): e2207190119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36037354

ABSTRACT

Mercaptoethane sulfonate or coenzyme M (CoM) is the smallest known organic cofactor and is most commonly associated with the methane-forming step in all methanogenic archaea but is also associated with the anaerobic oxidation of methane to CO2 in anaerobic methanotrophic archaea and the oxidation of short-chain alkanes in Syntrophoarchaeum species. It has also been found in a small number of bacteria capable of the metabolism of small organics. Although many of the steps for CoM biosynthesis in methanogenic archaea have been elucidated, a complete pathway for the biosynthesis of CoM in archaea or bacteria has not been reported. Here, we present the complete CoM biosynthesis pathway in bacteria, revealing distinct chemical steps relative to CoM biosynthesis in methanogenic archaea. The existence of different pathways represents a profound instance of convergent evolution. The five-step pathway involves the addition of sulfite, the elimination of phosphate, decarboxylation, thiolation, and the reduction to affect the sequential conversion of phosphoenolpyruvate to CoM. The salient features of the pathway demonstrate reactivities for members of large aspartase/fumarase and pyridoxal 5'-phosphate-dependent enzyme families.


Subject(s)
Bacteria , Coenzymes , Euryarchaeota , Mesna , Anaerobiosis , Archaea/metabolism , Bacteria/metabolism , Coenzymes/biosynthesis , Euryarchaeota/metabolism , Mesna/metabolism , Methane/metabolism , Oxidation-Reduction , Phosphates/metabolism
7.
Mol Cancer Ther ; 21(11): 1701-1709, 2022 11 03.
Article in English | MEDLINE | ID: mdl-35999662

ABSTRACT

New targeted chemotherapeutics are urgently needed to minimize off-target toxicity and reduce the high-mortality rate associated with metastatic prostate cancer. Herein, we report on the modular synthesis, pharmacokinetics, and efficacy of two small-molecule-drug conjugates (SMDC) targeted to prostate-specific membrane antigen (PSMA) incorporating either: (i) a cathepsin-B-cleavable valine-citrulline (Val-Cit), or (ii) an acid-cleavable phosphoramidate linker. Crucial components used in the design of the conjugates include: (i) CTT1298, a nanomolar affinity ligand that binds irreversibly to PSMA and has proven in past studies to rapidly internalize and shuttle payloads into PSMA-expressing prostate cancer cells, (ii) MMAE, a known potent cytotoxic payload, and (iii) an albumin-binder, proven to improve residence time of drug conjugates. At dose of 0.8 mg/kg (∼250 nmol/kg), the two SMDCs showed significant efficacy in a PSMA(+) PC3-PIP mouse model of human prostate cancer compared with controls, without inducing systemic toxicity. Though localization of the SMDCs was observed in tissues apart from the tumor, release of MMAE was observed predominantly in tumor tissue, at levels that were 2-3 orders of magnitude higher than non-target tissues. Furthermore, SMDC2, which incorporated a novel pH-responsive phosporamidate linker, demonstrated significantly improved efficacy over SMDC1 that has a Val-Cit linker, with a 100% survival over 90 days and 4 out of 8 mice showing complete tumor growth inhibition after 6 weekly doses of 0.8 mg/kg (244 nmol/kg). Our findings demonstrate the potential of irreversible PSMA inhibitors combined with pH-responsive linkers as a way to specifically deliver chemotherapeutic drugs to prostate cancer tumors with minimal toxicity.


Subject(s)
Antineoplastic Agents , Prostatic Neoplasms , Male , Animals , Humans , Mice , Cell Line, Tumor , Glutamate Carboxypeptidase II/metabolism , Antigens, Surface/metabolism , Prostatic Neoplasms/pathology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacokinetics , Albumins/therapeutic use
8.
J Enzyme Inhib Med Chem ; 37(1): 1315-1319, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35514164

ABSTRACT

Histone deacetylases (HDACs) are a family of enzymes responsible for regulating DNA transcription by modulating its binding to histone proteins. HDACs are overexpressed in several types of cancers and are recognised as drug targets. Vorinostat, or suberanilohydroxamic acid (SAHA), is an histone deacetylase (HDAC) inhibitor with a hydroxamic acid as a zinc-binding group (ZBG), and it has been FDA approved for the treatment of T-cell lymphoma. In this work, phosphorus-based SAHA analogues were synthesised to assess their zinc-binding effectiveness compared to the hydroxamic acid of SAHA. Specifically, we examined phosphate, phosphoramidate and phosphorothiolate groups as isosteres of the canonical hydroxamic acid motif of conventional HDAC inhibitors. The compounds were screened for binding to HDAC enzymes from HeLa cell lysate. The most potent derivatives were then screened against HDAC3 and HDAC8 isoforms. HDAC inhibition assays demonstrated that these phosphorus-based SAHA analogs exhibited slow binding to HDACs but with greater potency than phosphonate SAHA analogs examined previously. All compounds inhibited HDACs, the most potent having an IC50 of 50 µM.


Subject(s)
Histone Deacetylases , Phosphorus , HeLa Cells , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Humans , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Repressor Proteins/metabolism , Vorinostat/pharmacology , Zinc
10.
Bioconjug Chem ; 32(11): 2386-2396, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34699177

ABSTRACT

The tunable nature of phosphoramidate linkers enables broad applicability as pH-triggered controlled-release platforms, particularly in the context of antibody- and small-molecule-drug conjugates (ADCs and SMDCs), where there remains a need for new linker technology. Herein, we explored in-depth the release of turn-on fluorogenic payloads from a homoserinyl-based phosphoramidate acid-cleavable linker. Kinetics of payload release from the scaffold was observed in buffers representing the pH conditions of systemic circulation, early and late endosomes, and lysosomes. It was found that payload release takes place in two key consecutive steps: (1) P-N bond hydrolysis and (2) spacer immolation. These two steps were found to follow pseudo-first-order kinetics and had opposite dependencies on pH. P-N bond hydrolysis increased with decreasing pH, while spacer immolation was most rapid at physiological pH. Despite the contrasting release kinetics of these two steps, maximal payload release was observed at the mildly acidic pH (5.0-5.5), while minimal payload release occurred at physiological pH. We integrated this phosphoramidate-payload linker system into a PSMA-targeted fluorescent turn-on probe to study the intracellular trafficking and release of a fluorescent payload in PSMA-expressing prostate cancer cells. Results showed excellent turn-on and accumulation of the coumarin payload in the late endosomal and lysosomal compartments of these cells. The release properties of this linker mark it as an attractive alternative in the modular design of ADCs and SMDCs, which demand selective intracellular payload release triggered by the pH changes that accompany intracellular trafficking.


Subject(s)
Prostate , Humans , Male
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 247: 119072, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33128946

ABSTRACT

A unique reaction between thiols (RSH) and alkyl sulfonylbenzothiazole was discovered. This reaction was specific for thiols and produced a sulfinic acid (RSO2H) as the intermediate, which further triggered an intramolecular cyclization to release a -OH containing payload. This reaction was used to develop thiol-triggered fluorescent sensors and prodrugs. The modular design of this template provides tunability of the release profiles of the payloads.


Subject(s)
Prodrugs , Sulfhydryl Compounds , Cyclization
12.
Tetrahedron Lett ; 61(41)2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33191958

ABSTRACT

In this work, we developed a novel "click"-ready pH-cleavable phosphoramidate linker for controlled-release of monomethyl auristantin E (MMAE) in antibody- and small molecule-drug conjugates application. This water-soluble linker was found to have tremendous stability at physiological pHs while rapidly releasing its payload at acidic pH. The linker can also be tailored to release payloads of diverse functional groups, broadening its applications.

13.
Chem Res Toxicol ; 33(9): 2455-2466, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32833441

ABSTRACT

Studies with acetylcholinesterase (AChE) inhibited by organophosphorus (OP) compounds with two chiral centers can serve as models or surrogates for understanding the rate, orientation, and postinhibitory mechanisms by the nerve agent soman that possesses dual phosphorus and carbon chiral centers. In the current approach, stereoisomers of O-methyl, [S-(succinic acid, diethyl ester), O-(4-nitrophenyl) phosphorothiolate (MSNPs) were synthesized, and the inhibition, reactivation, and aging mechanisms were studied with electric eel AChE (eeAChE) and recombinant mouse brain AChE (rmAChE). The MSNP RPRC isomer was the strongest inhibitor of both eeAChE and rmAChE at 8- and 24-fold greater potency, respectively, than the weakest SPSC isomer. eeAChE inhibited by the RPRC- or RPSC-MSNP isomer underwent spontaneous reactivation ∼10- to 20-fold faster than the enzyme inhibited by SPRC- and SPSC-MSNP, and only 4% spontaneous reactivation was observed from the SPRC-eeAChE adduct. Using 2-pyridine aldoxime methiodide (2-PAM) or trimedoxime (TMB-4), eeAChE inhibited by RPRC- or SPRC-MSNP reactivated up to 90% and 3- to 4-fold faster than eeAChE inhibited by the RPSC- or SPSC-MSNP isomer. Spontaneous reactivation rates for rmAChE were 1.5- to 10-fold higher following inhibition by RPSC- and SPSC-MSNPs than inhibition by either RC isomer, a trend opposite to that found for eeAChE. Oxime reactivation of rmAChE following inhibition by RPRC- and SPRC-MSNPs was 2.5- to 5-fold faster than inhibition by RPSC- or SPSC-MSNPs. Due to structural similarities, MSNPs that phosphylate AChE with the loss of the p-nitrophenoxy (PNP) group form identical, nonreactivatable adducts to those formed from SP-isomalathion; however, all the MSNP isomers inhibited AChE to form adducts that reactivated. Thus, MSNPs inactivate AChE via the ejection of either PNP or thiosuccinyl groups to form a combination of reactivatable and nonreactivatable adducts, and this differs from the mechanism of AChE inhibition by isomalathion.


Subject(s)
Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Esters/pharmacology , Nitrophenols/pharmacology , Organophosphorus Compounds/pharmacology , Sulfhydryl Compounds/pharmacology , Animals , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Esters/chemistry , Mice , Molecular Structure , Nitrophenols/chemistry , Organophosphorus Compounds/chemical synthesis , Organophosphorus Compounds/chemistry , Sulfhydryl Compounds/chemistry
14.
Tetrahedron Lett ; 61(12)2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32205898

ABSTRACT

We previously described a pH-sensitive phosphoramidate linker scaffold that can be tuned to release amine-containing drugs at various pH values. In these previous studies it was determined that the tunability of this linker was dependent upon the proximity of an acidic group (e.g., carboxylic acid or pyridinium). In this study, we confirmed that the tunability of pH-triggered amine-release was also dependent upon the pKa of the proximal acidic group. A series of 2-carboxybenzyl phosphoramidates was prepared in which the pKa of the proximal benzoic acid was predictably attenuated by substituents on the benzoate ring consistent with their σ-values.

15.
Mol Imaging Biol ; 22(2): 274-284, 2020 04.
Article in English | MEDLINE | ID: mdl-31321650

ABSTRACT

PURPOSE: Prostate-specific membrane antigen (PSMA) continues to be the hallmark biomarker for prostate cancer as it is expressed on nearly all prostatic tumors. In addition, increased PSMA expression correlates with castration resistance and progression to the metastatic stage of the disease. Recently, we combined both an albumin-binding motif and an irreversible PSMA inhibitor to develop the novel PSMA-targeted radiotherapeutic agent, CTT1403. This molecule was novel in the field of PSMA-targeted agents as its key motifs resulted in extended blood circulation time and tumor uptake, rapid and extensive internalization into PSMA+ cells, and promising therapeutic efficacy. The objective of this study was to perform IND-enabling translational studies on CTT1403 in rodent models. PROCEDURES: A dose optimization study was performed in PC3-PIP (PSMA+) tumor-bearing mice. Treatment groups were randomly selected to receive one to three 14-MBq injections of CTT1403. Control groups included (1) saline, (2) non-radioactive [175Lu]CTT1403, or (3) two injections of 14 MBq CTT1751, a Lu-177-labeled non-targeted albumin-binding moiety. Tumor growth was monitored up to 120 days. Small-animal single photon emission tomography/X-ray computed tomography imaging was performed with CTT1403 and CTT1751 in PC3-PIP tumor-bearing mice to visualize infiltration of the Lu-177-labeled agent into the tumor. In preparation for a first-in-human study, human absorbed doses were estimated based on rat biodistribution out to 5 weeks to determine a safe CTT1403 therapy dose in humans. RESULTS: Two to 3 injections of 14 MBq CTT1403 yielded significant tumor growth inhibition and increased survival compared with all control groups and mice receiving 1 injection of 14 MBq CTT1403. Five of 12 mice receiving 2 or 3 injections of CTT1403 survived to the 120-day post-treatment study endpoint. Dosimetry identified the kidneys as the dose-limiting organ, with an equivalent dose of 5.18 mSv/MBq, resulting in a planned maximum dose of 4.4 GBq for phase 1 clinical trials. CONCLUSIONS: The preclinical efficacy and dosimetry of CTT1403 suggest that this agent has significant potential to be safe and effective in humans.


Subject(s)
Lutetium/pharmacology , Radioisotopes/pharmacology , Radiometry/methods , Radiopharmaceuticals/pharmacology , Animals , Antigens, Surface/chemistry , Drug Screening Assays, Antitumor , Glutamate Carboxypeptidase II/chemistry , Humans , Male , Mice , Mice, Nude , Neoplasm Transplantation , Neoplasms/drug therapy , Radioisotopes/chemistry , Rats , Rats, Sprague-Dawley , Single Photon Emission Computed Tomography Computed Tomography , Tissue Distribution , Xenograft Model Antitumor Assays
16.
Bioorg Med Chem Lett ; 29(18): 2571-2574, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31400939

ABSTRACT

l-Dopa has continued to be a mainstay in the symptomatic treatment of Parkinson's disease (PD). However, extensive peripheral metabolism, a short systemic circulation half-life and development of motor complications called dyskinesia prevents its long-term utilization as a PD therapeutic. Herein, we report a series of phosphoramidate derivatives of l-Dopa and controlled release of l-Dopa at pH 7.4 and 3. The kinetic data for the release of l-Dopa support our hypothesis that a proximal carboxylic acid can promote the pH-triggered hydrolysis of the phosphoramidate PN bond. As expected, esterification of the proximal carboxylic acid protects the scaffold from rapid release at low pH. This latter observation is particularly noteworthy as it suggests that the phosphoramidate-based l-Dopa-conjugate scaffold can be adapted for oral administration as an ester prodrug.


Subject(s)
Amides/chemistry , Antiparkinson Agents/chemistry , Levodopa/chemistry , Phosphoric Acids/chemistry , Prodrugs/chemistry , Delayed-Action Preparations , Humans , Hydrogen-Ion Concentration , Molecular Structure
17.
Bioorg Med Chem Lett ; 29(16): 2116-2118, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31281019

ABSTRACT

The class A ß-lactamase BlaC is a cell surface expressed serine hydrolase of Mycobacterium tuberculosis (Mtb), one of the causative agents for Tuberculosis in humans. Mtb has demonstrated increased susceptibility to ß-lactam antibiotics upon inactivation of BlaC; thus, making BlaC a rational enzyme target for therapeutic agents. Herein, we present the synthesis and structure-activity-relationship data for the 1st-generation library of bis(benzoyl) phosphates (1-10). Substituent effects ranged from σp = -0.27 to 0.78 for electronic and π = -0.41 to 1.98 for hydrophobic parameters. Compounds 1, 4 and 5 demonstrated the greatest inhibitory potency against BlaC in a time-dependent manner (kobs = 0.212, 0.324, and 0.450 mn-1 respectively). Combined crystal structure data and mass spectrometric analysis of a tryptic digest for BlaC inactivated with 4 provided evidence that the mechanism of inactivation by this bis(benzoyl) phosphate scaffold occurs via phosphorylation of the active-site Ser-70, ultimately leading to an aged form of the enzyme.


Subject(s)
Mycobacterium tuberculosis/enzymology , Organophosphates/chemistry , beta-Lactamase Inhibitors/chemistry , beta-Lactamases/chemistry , Catalytic Domain , Crystallography, X-Ray , Enzyme Assays , Molecular Structure , Organophosphates/chemical synthesis , Phosphorylation , Serine/chemistry , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship , beta-Lactamase Inhibitors/chemical synthesis
18.
Int J Mol Sci ; 20(13)2019 Jul 02.
Article in English | MEDLINE | ID: mdl-31269656

ABSTRACT

Mycobacterium tuberculosis, the pathogen responsible for tuberculosis (TB), is the leading cause of death from infectious disease worldwide. The class A serine ß-lactamase BlaC confers Mycobacterium tuberculosis resistance to conventional ß-lactam antibiotics. As the primary mechanism of bacterial resistance to ß-lactam antibiotics, the expression of a ß-lactamase by Mycobacterium tuberculosis results in hydrolysis of the ß-lactam ring and deactivation of these antibiotics. In this study, we conducted protein X-ray crystallographic analysis of the inactivation of BlaC, upon exposure to the inhibitor bis(benzoyl) phosphate. Crystal structure data confirms that serine ß-lactamase is phosphorylated at the catalytic serine residue (Ser-70) by this phosphate-based inactivator. This new crystallographic evidence suggests a mechanism for phosphorylation of BlaC inhibition by bis(benzoyl) phosphate over acylation. Additionally, we confirmed that bis(benzoyl) phosphate inactivated BlaC in a time-dependent manner.


Subject(s)
Mycobacterium tuberculosis/enzymology , Organophosphates/pharmacology , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/chemistry , Amino Acid Sequence , Benzoates/chemistry , Benzoates/pharmacology , Crystallography, X-Ray , Humans , Models, Molecular , Mycobacterium tuberculosis/chemistry , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/metabolism , Organophosphates/chemistry , Protein Conformation/drug effects , Sequence Alignment , Tuberculosis/drug therapy , Tuberculosis/microbiology , beta-Lactam Resistance/drug effects , beta-Lactamase Inhibitors/chemistry , beta-Lactamases/metabolism
19.
J Nucl Med ; 60(7): 910-916, 2019 07.
Article in English | MEDLINE | ID: mdl-30464040

ABSTRACT

Agents targeting prostate-specific membrane antigen (PSMA) comprise a rapidly emerging class of radiopharmaceuticals for diagnostic imaging of prostate cancer. Unlike most other PSMA agents with a urea backbone, CTT1057 is based on a phosphoramidate scaffold that irreversibly binds to PSMA. We conducted a first-in-humans phase I study of CTT1057 in patients with localized and metastatic prostate cancer. Methods: Two patient cohorts were recruited. Cohort A patients had biopsy-proven localized prostate cancer preceding radical prostatectomy, and cohort B patients had metastatic castration-resistant prostate cancer. Cohort A patients were imaged at multiple time points after intravenous injection with 362 ± 8 MBq of CTT1057 to evaluate the kinetics of CTT1057 and estimate radiation dose profiles. Mean organ-absorbed doses and effective doses were calculated. CTT1057 uptake in the prostate gland and regional lymph nodes was correlated with pathology, PSMA staining, and the results of conventional imaging. In cohort B, patients were imaged 60-120 min after injection of CTT1057. PET images were assessed for overall image quality, and areas of abnormal uptake were contrasted with conventional imaging. Results: In cohort A (n = 5), the average total effective dose was 0.023 mSv/MBq. The kidneys exhibited the highest absorbed dose, 0.067 mGy/MBq. The absorbed dose of the salivary glands was 0.015 mGy/MBq. For cohort B (n = 15), CTT1057 PET detected 97 metastatic lesions, and 44 of 56 bone metastases detected on CTT1057 PET (78.5%) were also detectable on bone scanning. Eight of 32 lymph nodes positive on CTT1057 PET (25%) were enlarged by size criteria on CT. Conclusion: CTT1057 is a promising novel phosphoramidate PSMA-targeting 18F-labeled PET radiopharmaceutical that demonstrates similar biodistribution to urea-based PSMA-targeted agents, with lower exposure to the kidneys and salivary glands. Metastatic lesions are detected with higher sensitivity on CTT1057 imaging than on conventional imaging. Further prospective studies with CTT1057 are warranted to elucidate its role in cancer imaging.


Subject(s)
Amides/chemistry , Amides/metabolism , Antigens, Surface/metabolism , Fluorine Radioisotopes , Glutamate Carboxypeptidase II/metabolism , Phosphoric Acids/chemistry , Phosphoric Acids/metabolism , Positron-Emission Tomography/methods , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/metabolism , Aged , Amides/adverse effects , Amides/pharmacokinetics , Cohort Studies , Humans , Isotope Labeling , Male , Middle Aged , Phosphoric Acids/adverse effects , Phosphoric Acids/pharmacokinetics , Prospective Studies , Safety , Tissue Distribution , Whole Body Imaging
20.
Theranostics ; 7(7): 1928-1939, 2017.
Article in English | MEDLINE | ID: mdl-28638478

ABSTRACT

Prostate-specific membrane antigen (PSMA) continues to be an active biomarker for small-molecule PSMA-targeted imaging and therapeutic agents for prostate cancer and various non-prostatic tumors that are characterized by PSMA expression on their neovasculature. One of the challenges for small-molecule PSMA inhibitors with respect to delivering therapeutic payloads is their rapid renal clearance. In order to overcome this pharmacokinetic challenge, we outfitted a 177Lu-labeled phosphoramidate-based PSMA inhibitor (CTT1298) with an albumin-binding motif (CTT1403) and compared its in vivo performance with that of an analogous compound lacking the albumin-binding motif (CTT1401). The radiolabeling of CTT1401 and CTT1403 was achieved using click chemistry to connect 177Lu-DOTA-N3 to the dibenzocyclooctyne (DBCO)-bearing CTT1298 inhibitor cores. A direct comparison in vitro and in vivo performance was made for CTT1401 and CTT1403; the specificity and efficacy by means of cellular uptake and internalization, biodistribution, and therapeutic efficacy were determined for both compounds. While both compounds displayed excellent uptake and rapid internalization in PSMA+ PC3-PIP cells, the albumin binding moiety in CTT1403 conferred clear advantages to the PSMA-inhibitor scaffold including increased circulating half-life and prostate tumor uptake that continued to increase up to 168 h post-injection. This increased tumor uptake translated into superior therapeutic efficacy of CTT1403 in PSMA+ PC3-PIP human xenograft tumors.


Subject(s)
Amides/pharmacology , Antineoplastic Agents/pharmacology , Glutamate Carboxypeptidase II/antagonists & inhibitors , Lutetium/pharmacology , Phosphoric Acids/pharmacology , Prostatic Neoplasms/drug therapy , Radioisotopes/pharmacology , Albumins/metabolism , Amides/administration & dosage , Amides/pharmacokinetics , Animals , Antigens, Surface , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Disease Models, Animal , Heterografts , Humans , Lutetium/administration & dosage , Lutetium/pharmacokinetics , Male , Mice , Mice, Nude , Phosphoric Acids/administration & dosage , Phosphoric Acids/pharmacokinetics , Radioisotopes/administration & dosage , Radioisotopes/pharmacokinetics , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...