Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Nat Commun ; 15(1): 2993, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582763

ABSTRACT

Bacteriophage therapy is a promising approach to address antimicrobial infections though questions remain regarding the impact of the immune response on clinical effectiveness. Here, we develop a mouse model to assess phage treatment using a cocktail of five phages from the Myoviridae and Siphoviridae families that target Vancomycin-Resistant Enterococcus gut colonization. Phage treatment significantly reduces fecal bacterial loads of Vancomycin-Resistant Enterococcus. We also characterize immune responses elicited following administration of the phage cocktail. While minimal innate responses are observed after phage administration, two rounds of treatment induces phage-specific neutralizing antibodies and accelerate phage clearance from tissues. Interestingly, the myophages in our cocktail induce a more robust neutralizing antibody response than the siphophages. This anti-phage immunity reduces the effectiveness of the phage cocktail in our murine model. Collectively, this study shows phage-specific immune responses may be an important consideration in the development of phage cocktails for therapeutic use.


Subject(s)
Bacteriophages , Vancomycin-Resistant Enterococci , Humans , Animals , Mice , Bacteriophages/physiology , Vancomycin/pharmacology , Disease Models, Animal , Myoviridae/physiology , Anti-Bacterial Agents/pharmacology
2.
Am J Infect Control ; 52(1): 91-106, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37978984

ABSTRACT

BACKGROUND: Infection Preventionist to date are experiencing staffing shortages, the purpose of this narrative review is to understand how heath care organizations track staffing and outcome metrics in relation to Infection Preventionists. METHODS: Databases utilized included MEDLINE, PubMed, EMBASE, Web of Science, and Google Scholar. RESULTS: The initial search included 668 studies. After excluding duplicates, the title and abstract review yielded 50 articles. After screening full texts, 37 studies met the inclusion criteria. Significant variability exists within infection prevention staffing metrics. Common metrics to account for IP staffing levels include the ratio of IPs per facility and IPs per inpatient bed. Frequently tracked outcomes in relation to infection preventionists include Catheter-associated urinary tract infections and central line bloodstream infection incidence rates and standardized infection ratios, as well as Clostridioides difficile incidence rates. Metrics and outcomes from included studies are available in our supporting tables. CONCLUSIONS: This review highlights the need for a new IP staffing model that focuses on a granular assessment of each program and care setting. Additional studies can then be conducted to examine how ideal staffing impacts outcome metrics.


Subject(s)
Cross Infection , Humans , Cross Infection/epidemiology , Cross Infection/prevention & control , Benchmarking , Workforce , Delivery of Health Care
3.
Cell Rep Med ; 1(3): 100039, 2020 06 23.
Article in English | MEDLINE | ID: mdl-33205061

ABSTRACT

Growing evidence indicates a role for the gut microbiota in modulating anti-tumor treatment efficacy in human cancer. Here we study mucosa-associated invariant T (MAIT) cells to look for evidence of bacterial antigen recognition in human colon, lung, and kidney carcinomas. Using mass cytometry and single-cell mRNA sequencing, we identify a tumor-infiltrating MAIT cell subset expressing CD4 and Foxp3 and observe high expression of CD39 on MAIT cells from colorectal cancer (CRC) only, which we show in vitro to be expressed specifically after TCR stimulation. We further reveal that these cells are phenotypically and functionally exhausted. Sequencing data show high bacterial infiltration in CRC tumors and highlight an enriched species, Fusobacteria nucleatum, with capability to activate MAIT cells in a TCR-dependent way. Our results provide evidence of a MAIT cell response to microbial antigens in CRC and could pave the way for manipulating MAIT cells or the microbiome for cancer therapy.


Subject(s)
Antigens, Bacterial/immunology , Colorectal Neoplasms/immunology , Gastrointestinal Microbiome/immunology , Mucosal-Associated Invariant T Cells/immunology , Antigens, CD/immunology , Apyrase/immunology , CD4 Antigens/immunology , Cell Line, Tumor , Forkhead Transcription Factors/immunology , Humans , Lymphocyte Activation/immunology , Receptors, Antigen, T-Cell/immunology
4.
Immunohorizons ; 4(1): 14-22, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31974109

ABSTRACT

Mucosal-associated invariant T (MAIT) cells acquire effector function in response to proinflammatory signals, which synergize with TCR-mediated signals. We asked if cell-intrinsic regulatory mechanisms exist to curtail MAIT cell effector function akin to the activation-induced expression of inhibitory receptors by conventional T cells. We examined human MAIT cells from blood and oral mucosal tissues by RNA sequencing and found differential expression of immunoregulatory genes, including CTLA-4, by MAIT cells isolated from tissue. Using an ex vivo experimental setup, we demonstrate that inflammatory cytokines were sufficient to induce CTLA-4 expression on the MAIT cell surface in the absence of TCR signals. Even brief exposure to the cytokines IL-12, IL-15, and IL-18 was sufficient for sustained CTLA-4 expression by MAIT cells. These data suggest that control of CTLA-4 expression is fundamentally different between MAIT cells and conventional T cells. We propose that this mechanism serves to limit MAIT cell-mediated tissue damage.


Subject(s)
Antigens, Surface/immunology , CD8-Positive T-Lymphocytes/immunology , CTLA-4 Antigen/immunology , Cytokines/immunology , Mucosal-Associated Invariant T Cells/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Blood/immunology , Female , Gene Expression/immunology , Humans , Inflammation/genetics , Male , Middle Aged , Mucous Membrane/immunology , Receptors, Antigen, T-Cell/immunology
5.
Sci Transl Med ; 11(521)2019 12 04.
Article in English | MEDLINE | ID: mdl-31801887

ABSTRACT

CCR5 is thought to play a central role in orchestrating migration of cells in response to inflammation. CCR5 antagonists can reduce inflammatory disease processes, which has led to an increased interest in using CCR5 antagonists in a wide range of inflammation-driven diseases. Paradoxically, these antagonists appear to function without negatively affecting host immunity at barrier sites. We reasoned that the resolution to this paradox may lie in the CCR5+ T cell populations that permanently reside in tissues. We used a single-cell analysis approach to examine the human CCR5+ T cell compartment in the blood, healthy, and inflamed mucosal tissues to resolve these seemingly contradictory observations. We found that 65% of the CD4 tissue-resident memory T (TRM) cell compartment expressed CCR5. These CCR5+ TRM cells were enriched in and near the epithelial layer and not only limited to TH1-type cells but also contained a large TH17-producing and a stable regulatory T cell population. The CCR5+ TRM compartment was stably maintained even in inflamed tissues including the preservation of TH17 and regulatory T cell populations. Further, using tissues from the CHARM-03 clinical trial, we found that CCR5+ TRM are preserved in human mucosal tissue during treatment with the CCR5 antagonist Maraviroc. Our data suggest that the human CCR5+ TRM compartment is functionally and spatially equipped to maintain barrier immunity even in the absence of CCR5-mediated, de novo T cell recruitment from the periphery.


Subject(s)
Cell Compartmentation , Inflammation/immunology , Receptors, CCR5/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Compartmentation/drug effects , Cytokines/biosynthesis , Female , Humans , Lectins, C-Type/metabolism , Lymphocyte Subsets/drug effects , Lymphocyte Subsets/immunology , Male , Maraviroc/pharmacology , Middle Aged , Mouth Mucosa/drug effects , Mouth Mucosa/immunology , Mouth Mucosa/pathology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/drug effects , Th17 Cells/drug effects , Th17 Cells/immunology , Transcriptome/genetics , Young Adult
6.
JCI Insight ; 3(7)2018 04 05.
Article in English | MEDLINE | ID: mdl-29618662

ABSTRACT

Mucosal-associated invariant T cells (MAIT cells) recognize bacterial metabolites as antigen and are found in blood and tissues, where they are poised to contribute to barrier immunity. Recent data demonstrate that MAIT cells located in mucosal barrier tissues are functionally distinct from their blood counterparts, but the relationship and circulation of MAIT cells between blood and different tissue compartments remains poorly understood. Previous studies raised the possibility that MAIT cells do not leave tissue and may either be retained or undergo apoptosis. To directly address if human MAIT cells exit tissues, we collected human donor-matched thoracic duct lymph and blood and analyzed MAIT cell phenotype, transcriptome, and T cell receptor (TCR) diversity by flow cytometry and RNA sequencing. We found that MAIT cells were present in the lymph, despite being largely CCR7- in the blood, thus indicating that MAIT cells in the lymph migrated from tissues and were capable of exiting tissues to recirculate. Importantly, MAIT cells in the lymph and blood had highly overlapping clonotype usage but distinct transcriptome signatures, indicative of differential activation states.


Subject(s)
Immunity, Mucosal , Lymph/cytology , Mucosal-Associated Invariant T Cells/immunology , Adolescent , Adult , Aged , Cell Separation , Child , Child, Preschool , Flow Cytometry , Gene Expression Profiling , Humans , Lymph/immunology , Middle Aged , Mucosal-Associated Invariant T Cells/metabolism , Mucous Membrane/cytology , Mucous Membrane/immunology , Receptors, Antigen, T-Cell/metabolism , Thoracic Duct , Young Adult
7.
Immunol Lett ; 192: 7-11, 2017 12.
Article in English | MEDLINE | ID: mdl-28987476

ABSTRACT

We review the recent human mucosal-associated invariant T (MAIT) cell literature to examine the signals that control MAIT cell activation. We discuss these signals in context of MAIT cell function in mucosal barrier tissues and address how MAIT cells avoid responding to commensal bacteria, while maintaining responsiveness to infections.


Subject(s)
Bacterial Infections/immunology , Mucosal-Associated Invariant T Cells/immunology , Mucous Membrane/immunology , Animals , Bacterial Infections/diagnosis , Cytokines/metabolism , Diagnosis, Differential , Homeostasis , Humans , Immune Tolerance , Immunity, Innate , Mucous Membrane/microbiology
8.
Vaccine ; 33(32): 3865-72, 2015 Jul 31.
Article in English | MEDLINE | ID: mdl-26122582

ABSTRACT

Sublethal γ irradiation eliminates CD8+ T cell mediated memory responses. In this work, we explored how these memory responses could be rescued in the aftermath of such exposure. We utilized two models of CD8+ T cell mediated immunity: a mouse model of Listeria monocytogenes (LM) infection in which CD8+ T cells specific for LM expressed antigens (Listeriolysin O, LLO) can be tracked, and a murine skin graft model in which CD8+ T cells mediate rejection across a MHC class I (D(d)) disparity. In the LM immunized mice, LL0 specific CD8+ T memory cells were lost on irradiation, preserved with rapid revaccination with an attenuated strain 1-3 days post-irradiation (PI), and these mice survived a subsequent wild type LM challenge. A genetic "signature of rescue" identified a group of immune-associated mRNA maintained or upregulated following irradiation and rescue. A number of these factors, including IL-36γ, dectin-2 (Clec4n), and mir101c are upregulated rapidly after exposure of mice to sublethal γ radiation alone and are sustained by early, but not later rescue. Such factors will be evaluated as potential therapeutics to replace individual vaccines for global rescue of CD8+ T memory cell responses following sublethal γ irradiation. The skin allograft model mirrored that of the LM model in that the accelerated D(d) skin allograft rejection response was lost in mice exposed to sublethal γ radiation, but infusion of allogeneic D(d) expressing bone marrow cells 1-4 days PI preserved the CD8+ T memory mediated accelerated rejection response, further suggesting that innate immune responses may not always be essential to rescue of CD8+ memory T cells following γ irradiation.


Subject(s)
Bacterial Vaccines/immunology , CD8-Positive T-Lymphocytes/immunology , Gamma Rays , Immunologic Memory , Radiation Exposure , Allografts/immunology , Animals , Bacterial Vaccines/administration & dosage , Female , Graft Rejection , Listeria monocytogenes/immunology , Mice, Inbred BALB C
9.
Hepatology ; 62(2): 546-57, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25712247

ABSTRACT

UNLABELLED: Clinical evidence suggests that many cases of serious idiosyncratic drug-induced liver injury are mediated by the adaptive immune system in response to hepatic drug-protein adducts, also referred to as "drug-induced allergic hepatitis"; but detailed mechanistic proof has remained elusive due to the lack of animal models. We have hypothesized that drug-induced allergic hepatitis is as rare in animals as it is in humans due at least in part to the tolerogenic nature of the liver. We provide evidence that immune tolerance can be overcome in a murine model of halothane-induced liver injury initiated by trifluoroacetylated protein adducts of halothane formed in the liver. Twenty-four hours after female Balb/cJ mice were initially treated with halothane, perivenous necrosis and an infiltration of CD11b(+) Gr-1(high) cells were observed in the liver. Further study revealed a subpopulation of myeloid-derived suppressor cells within the CD11b(+) Gr-1(high) cell fraction that inhibited the proliferation of both CD4(+) and CD8(+) T cells. When CD11b(+) Gr-1(high) cells were depleted from the liver with Gr-1 antibody treatment, enhanced liver injury was observed at 9 days after halothane rechallenge. Toxicity was associated with increased serum levels of interleukin-4 and immunoglobulins G1 and E directed against hepatic trifluoroacetylated protein adducts, as well as increased hepatic infiltration of eosinophils and CD4(+) T cells, all features of an allergic reaction. When hepatic CD4(+) T cells were depleted 5 days after halothane rechallenge, trifluoroacetylated protein adduct-specific serum immunoglobulin and hepatotoxicity were reduced. CONCLUSION: Our data provide a rational approach for developing animal models of drug-induced allergic hepatitis mediated by the adaptive immune system and suggest that impaired liver tolerance may predispose patients to this disease.


Subject(s)
CD11b Antigen/immunology , CD8-Positive T-Lymphocytes/immunology , Chemical and Drug Induced Liver Injury/immunology , Halothane/toxicity , Hepatitis/immunology , Myeloid Cells/metabolism , Alanine Transaminase/metabolism , Analysis of Variance , Animals , CD11b Antigen/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Proliferation , Chemical and Drug Induced Liver Injury/pathology , Disease Models, Animal , Female , Flow Cytometry , Hepatitis/pathology , Immunohistochemistry , Mice , Mice, Inbred BALB C , Myeloid Cells/drug effects , Nitric Oxide/metabolism , Random Allocation
10.
Hepatology ; 60(5): 1741-52, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24723460

ABSTRACT

UNLABELLED: Liver eosinophilia has been associated with incidences of drug-induced liver injury (DILI) for more than 50 years, although its role in this disease has remained largely unknown. In this regard, it was recently shown that eosinophils played a pathogenic role in a mouse model of halothane-induced liver injury (HILI). However, the signaling events that drove hepatic expression of eosinophil-associated chemokines, eotaxins, eosinophil infiltration, and subsequent HILI were unclear. We now provide evidence implicating hepatic epithelial-derived cytokine thymic stromal lymphopoietin (TSLP) and type 2 immunity, in particular, interleukin-4 (IL-4) production, in mediating hepatic eosinophilia and injury during HILI. TSLP was constitutively expressed by mouse hepatocytes and increased during HILI. Moreover, the severity of HILI was reduced in mice deficient in either the TSLP receptor (TSLPR) or IL-4 and was accompanied by decreases in serum levels of eotaxins and hepatic eosinophilia. Similarly, concanavalin A-induced liver injury, where type 2 cytokines and eosinophils play a significant role in its pathogenesis, was also reduced in TSLPR-deficient mice. Studies in vitro revealed that mouse and human hepatocytes produce TSLP and eotaxins in response to treatment with combinations of IL-4 and proinflammatory cytokines IL-1ß and tumor necrosis factor alpha. CONCLUSION: This report provides the first evidence implicating roles for hepatic TSLP signaling, type 2 immunity, and eosinophilia in mediating liver injury caused by a drug.


Subject(s)
Anesthetics, Inhalation/adverse effects , Chemical and Drug Induced Liver Injury/etiology , Cytokines/metabolism , Halothane/adverse effects , Interleukin-4/metabolism , Animals , Concanavalin A , Female , Hepatitis, Animal/metabolism , Hepatocytes/metabolism , Humans , Mice, Inbred BALB C , Thymic Stromal Lymphopoietin
11.
Hepatology ; 57(5): 2026-36, 2013 May.
Article in English | MEDLINE | ID: mdl-23238640

ABSTRACT

UNLABELLED: Drug-induced liver injury (DILI) is a major health issue, as it remains difficult to predict which new drugs will cause injury and who will be susceptible to this disease. This is due in part to the lack of animal models and knowledge of susceptibility factors that predispose individuals to DILI. In this regard, liver eosinophilia has often been associated with DILI, although its role remains unclear. We decided to investigate this problem in a murine model of halothane-induced liver injury (HILI). When female Balb/cJ mice were administered halothane, eosinophils were detected by flow cytometry in the liver within 12 hours and increased thereafter proportionally to liver damage. Chemokines, eotaxin-1 (CCL11) and eotaxin-2 (CCL24), which are known to attract eosinophils, increased in response to halothane treatment. The severity of HILI was decreased significantly when the study was repeated in wildtype mice made deficient in eosinophils with a depleting antibody and in eosinophil lineage-ablated ΔdblGata(-/-) mice. Moreover, depletion of neutrophils by pretreating animals with Gr-1 antibody prior to halothane administration failed to reduce the severity of HILI at antibody concentrations that did not affect hepatic eosinophils. Immunohistochemical staining for the granule protein, major basic protein, revealed that eosinophils accumulated exclusively around areas of hepatocellular necrosis. CONCLUSION: Our findings indicate that eosinophils have a pathologic role in HILI in mice and suggest that they may contribute similarly in many clinical cases of DILI.


Subject(s)
Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/physiopathology , Eosinophils/physiology , Halothane/adverse effects , Animals , Cell Movement , Chemical and Drug Induced Liver Injury/pathology , Chemokine CCL11/metabolism , Chemokine CCL24/metabolism , Comorbidity , Disease Models, Animal , Eosinophilia/epidemiology , Eosinophils/pathology , Female , Liver/metabolism , Liver/pathology , Mice , Mice, Inbred BALB C , Mice, Knockout , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL
...