Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38891501

ABSTRACT

This article summarizes findings in the field of the history, composition, and mechanical properties of WPCs (wood-plastic composites) formed by combining two homogeneous substances, i.e., a polymer matrix with cellulose fibers in a certain ratio (with the addition of additives). In relation to a wide range of applied natural reinforcements in composites, it focuses on wood as a fundamental representative of lignocellulosic fibers. It elucidates the concept of wood flour, the criteria for its selection, methods of storage, morphological characteristics, and similar aspects. The presence of wood in the plastic matrix reduces the material cost while increasing the stiffness. Matrix selection is influenced by the processing temperature (Tmax = 200 °C) due to the susceptibility of cellulose fibers to thermal degradation. Thermoplastics and selected biodegradable polymers can be applied as matrices. The article also includes information on applied additives such as coupling agents, lubricants, biocides, UV stabilizers, pigments, etc., and the mechanical/utility properties of WPC materials. The most common application of WPCs is in automotive sector, construction, aerospace, and structural applications. The potential biodegradability and lower cost of applications featuring composite materials with natural reinforcements motivated us to delve into this type of work.

2.
Materials (Basel) ; 16(21)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37959474

ABSTRACT

The effect of ion nitriding and nitriding in a melamine-based powder mixture on the structure and properties of AISI A290C1M steel was studied in the paper. Using ion nitriding made it possible to shorten the technological cycle's duration by 5-6 times compared to two-stage nitriding, optimize the diffusion layer's composition, provide a technologically simple process automation scheme, and improve the quality of nitride coatings. After the proposed mode of ion nitriding, a saturated layer depth of 0.25-0.32 mm, hardness up to 1000 HV, and an increase in wear resistance by 2.17 times were obtained. Using 95% melamine + 5% sodium fluoride during nitriding in a powder mixture significantly simplified the technological process. It did not require additional expensive equipment, which in turn significantly simplified the nitriding process with energy savings. The proposed technology and the composition of the mixture contributed to a significant acceleration of the nitriding process of AISI A290C1M steel, compared to traditional gas nitriding, and to obtain a hardness of the nitride layer of 970 HV and an increase in wear resistance by 2.6 times. A nitriding speed is explained by a significantly higher amount of atomic nitrogen when using melamine instead of ammonia and by the almost simultaneous disintegration of nanodispersed particles when the nitriding temperature was reached. After nitriding in a powder mixture, steel was subject to the slightest wear.

3.
Polymers (Basel) ; 14(23)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36501680

ABSTRACT

Composite materials have a wide range of functional properties, which is ensured by using various technological methods of obtaining both the matrix or fillers and the composition as a whole. A special place belongs to the composition formation technology, which ensures the necessary structure and properties of the composite. In this work, a computer simulation was carried out to identify the main dependencies of the behavior of composite materials in the process of the main technological operations of their production: pressing and subsequent sintering. A polymer matrix randomly reinforced with two types of fillers: spherical and short cylindrical inclusions, was used to construct the finite element models of the structure of composites. The ANSYS Workbench package was used as a calculation simulation platform. The true stress-strain curves for tension, Poisson's ratios, and ultimate stresses for composite materials were obtained using the finite element method based on the micromechanical approach at the first stage. These values were calculated based on the stretching diagrams of the matrix and fillers and the condition of the ideality of their joint operation. At the second stage, the processes of mechanical pressing of composite materials were modelled based on their elastic-plastic characteristics from the first stage. The result is an assessment of the accumulation of residual strains at the stage before sintering. The degree of increase in total strain capability of composite materials after sintering was shown.

SELECTION OF CITATIONS
SEARCH DETAIL
...