Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Microbiol ; 115(2): 572-82, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23683001

ABSTRACT

AIMS: This study compared the potential for cross contamination of the surrounding environment resulting from two different hand-drying methods: paper towels and the use of an air blade dryer. METHODS AND RESULTS: One hundred volunteers for each method washed their hands and dried them using one of the two methods. Bacterial contamination of the surrounding environment was measured using settle plates placed on the floor in a grid pattern, air sampling and surface swabs. Both drying methods produced ballistic droplets in the immediate vicinity of the hand-drying process. The air blade dryer produced a larger number of droplets which were dispersed over a larger area. Settle plates showed increased microbial contamination in the grid squares which were affected by ballistic droplets. Using the settle plates counts, it was estimated that approx. 1.7 × 10(5) cfu more micro-organisms were left on the laboratory floor (total area approx. 17.15 m(2)) after 100 volunteers used an air blade dryer compared to when paper towels were used. CONCLUSIONS: The two drying methods led to different patterns of ballistic droplets and levels of microbial contamination under heavy use conditions. Whilst the increase in microbial levels in the environment is not significant if only nonpathogenic micro-organisms are spread, it may increase the risk of pathogen contamination of the environment when pathogens are occasionally present on people's hands. SIGNIFICANCE AND IMPACT OF THE STUDY: The study suggests that the risk of cross contamination from the washroom users to the environment and subsequent users should be considered when choosing a hand-drying method. The data could potentially give guidance following the selection of drying methods on implementing measures to minimise the risk of cross contamination.


Subject(s)
Hand Disinfection/methods , Air Microbiology , Desiccation , Hand/microbiology , Humans , Paper
2.
Biochemistry ; 34(32): 10153-61, 1995 Aug 15.
Article in English | MEDLINE | ID: mdl-7640269

ABSTRACT

We have investigated the binding of mutant forms of glucoamylase from Aspergillus niger to the inhibitors 1-deoxynojirimycin and acarbose. The mutants studied comprise a group of single amino acid replacements in conserved regions near the active site of the enzyme. For each mutant we have determined both the affinities for the two inhibitors and the thermodynamic state functions for binding using titration microcalorimetry. We find that acarbose binds to all the mutants with a wide range of binding constants (10(4) < Ka < 10(13) M-1). In contrast, 1-deoxynojirimycin shows either binding at near wild-type affinity (Ka approximately equal to 10(4) M-1) or no detectable binding. The changes in the affinities of the mutant enzymes are rationalized in terms of the known three-dimensional structure of the wild-type enzyme with subsites 1, 2, and 3 being important for acarbose binding while only subsite 1 is critical for 1-deoxynojirimycin binding. In most of the mutants studied the magnitudes of the enthalpies and the entropies of binding of the mutant enzymes differed from those of the wild-type enzyme with the mutant enzymes having a relatively large portion of their binding energy composed of enthalpy and a relatively small proportion composed of entropy. The pattern of changes in the enthalpy and entropy is hypothesized to be due to changes in the structural complementarity of the binding pocket and the inhibitor.


Subject(s)
Aspergillus niger/enzymology , Glucan 1,4-alpha-Glucosidase/antagonists & inhibitors , 1-Deoxynojirimycin/metabolism , Acarbose , Binding Sites , Calorimetry/methods , Carbohydrate Sequence , Glucan 1,4-alpha-Glucosidase/genetics , Glucan 1,4-alpha-Glucosidase/metabolism , Molecular Sequence Data , Mutagenesis, Site-Directed , Thermodynamics , Trisaccharides/metabolism
3.
Biochemistry ; 33(33): 10191-9, 1994 Aug 23.
Article in English | MEDLINE | ID: mdl-8060985

ABSTRACT

The binding of different inhibitors to glucoamylase G2 from Aspergillus niger and its temperature and pH dependencies have been studied by titration calorimetry. The enzyme binds the inhibitors 1-deoxynojirimycin and the pseudo-tetrasaccharide acarbose with association constants of 3 x 10(4) and 9 x 10(11) M-1, respectively, at 27 degrees C. The binding free energy for both ligands is remarkably temperature-invariant in the interval from 9 to 54 degrees C as the result of large compensating changes in enthalpy and entropy. Acarbose and 1-deoxynojirimycin bound with slightly different free energy-pH profiles, with optima at 5.5 and 5.5-7.0, respectively. Variations in delta H degrees and T delta S degrees as a function of pH were substantially larger than variations in delta G degrees in a partly compensatory manner. Two titratable groups at or near subsite 1 of the catalytic site were found to change their pKa slightly upon binding. The hydrogenated forms of acarbose, D-gluco- and L-ido-dihydroacarbose, bind with greatly reduced association constants of 3 x 10(7) and 2 x 10(5) M-1, respectively, and the pseudo-disaccharide methyl acarviosinide, lacking the two glucose units at the reducing end compared to acarbose, has a binding constant of 8 x 10(6) M-1; these values all result from losses in both enthalpy and entropy compared to acarbose. Three thio analogues of the substrate maltose, methyl alpha- and beta-4-thiomaltoside and methyl alpha-4,5'-dithiomaltoside, bind with affinities from 3 x 10(3) to 6 x 10(4) M-1.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Calorimetry , Glucan 1,4-alpha-Glucosidase/antagonists & inhibitors , 1-Deoxynojirimycin/metabolism , Acarbose , Aspergillus niger/enzymology , Binding Sites , Glucan 1,4-alpha-Glucosidase/metabolism , Hydrogen-Ion Concentration , Maltose/analogs & derivatives , Maltose/metabolism , Temperature , Thermodynamics , Trisaccharides/chemistry , Trisaccharides/metabolism
4.
Proc Natl Acad Sci U S A ; 89(4): 1214-8, 1992 Feb 15.
Article in English | MEDLINE | ID: mdl-1741375

ABSTRACT

We report measurement of the solid-liquid phase boundary, or liquidus line, for aqueous solutions of three pure calf gamma-crystallin proteins: gamma II, gamma IIIa, and gamma IIIb. We also studied the liquidus line for solutions of native gamma IV-crystallin calf lens protein, which consists of 85% gamma IVa/15% gamma IVb. In all four proteins the liquidus phase boundaries lie higher in temperature than the previously determined liquid-liquid coexistence curves. Thus, over the range of concentration and temperature for which liquid-liquid phase separation occurs, the coexistence of a protein crystal phase with a protein liquid solution phase is thermodynamically stable relative to the metastable separated liquid phases. The location of the liquidus lines clearly divides these four crystallin proteins into two groups: those in which liquidus lines flatten at temperatures greater than 70 degrees C: gamma IIIa and gamma IV, and those in which liquidus lines flatten at temperatures less than 50 degrees C: gamma II and gamma IIIb. We have analyzed the form of the liquidus lines by using specific choices for the structures of the Gibbs free energy in solution and solid phases. By applying the thermodynamic conditions for equilibrium between the two phases to the resulting chemical potentials, we can estimate the temperature-dependent free energy change upon binding of protein and water into the solid phase.


Subject(s)
Crystallins/chemistry , Animals , Cattle , Crystallography , Hydrogen-Ion Concentration , In Vitro Techniques , Solutions , Temperature , Thermodynamics , Water
5.
Proc Natl Acad Sci U S A ; 88(13): 5660-4, 1991 Jul 01.
Article in English | MEDLINE | ID: mdl-2062844

ABSTRACT

We have determined the coexistence curves (plots of phase-separation temperature T versus protein concentration C) for aqueous solutions of purified calf lens proteins. The proteins studied, calf gamma IIIa-, gamma IIIb-, and gamma IVa-crystallin, have very similar amino acid sequences and three-dimensional structures. Both ascending and descending limbs of the coexistence curves were measured. We find that the coexistence curves for each of these proteins and for gamma II-crystallin can be fit, near the critical point, to the function /(Cc-C)/Cc/ = A [(Tc - T)/Tc]beta, where beta = 0.325, Cc is the critical protein concentration in mg/ml, Tc is the critical temperature for phase separation in K, and A is a parameter that characterizes the width of the coexistence curve. We find that A and Cc are approximately the same for all four coexistence curves (A = 2.6 +/- 0.1, Cc = 289 +/- 20 mg/ml), but that Tc is not the same. For gamma II- and gamma IIIb-crystallin, Tc approximately 5 degrees C, whereas for gamma IIIa- and gamma IVa-crystallin, Tc approximately 38 degrees C. By comparing the published protein sequences for calf, rat, and human gamma-crystallins, we postulate that a few key amino acid residues account for the division of gamma-crystallins into low-Tc and high-Tc groups.


Subject(s)
Crystallins/chemistry , Animals , Cattle , Chemical Phenomena , Chemistry, Physical , Crystallins/isolation & purification , Crystallography , Hydrogen-Ion Concentration , In Vitro Techniques , Solutions , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...