Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Genet Mol Res ; 14(4): 19110-6, 2015 Dec 29.
Article in English | MEDLINE | ID: mdl-26782563

ABSTRACT

The aim of the current study was to investigate the association between the InDel polymorphism in the angiotensin I-converting enzyme gene (ACE) and the rs699 polymorphism in the angiotensinogen gene (AGT) and diabetes mellitus type 2 (DM2) in a sample population from Southern Brazil. A case-control study was conducted with 228 patients with DM2 and 183 controls without DM2. The ACE InDel polymorphism was genotyped by polymerase chain reaction (PCR) with specific primers, followed by electrophoresis on 1.5% agarose gel. The AGT rs699 polymorphism was genotyped using a real-time PCR assay. No significant association between the ACE InDel polymorphism and DM2 was detected (P = 0.97). However, regarding the AGT rs699 polymorphism, DM2 patients had a significantly higher frequency of the AG genotype and lower frequency of the GG genotype when compared to the controls (P = 0.03). Our results suggest that there is an association between the AGT rs699 polymorphism and DM2 in a Brazilian sample.


Subject(s)
Angiotensinogen/genetics , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , INDEL Mutation , Peptidyl-Dipeptidase A/genetics , Polymorphism, Genetic , Aged , Alleles , Angiotensinogen/metabolism , Brazil , Case-Control Studies , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Female , Gene Expression , Gene Frequency , Humans , Male , Middle Aged , Peptidyl-Dipeptidase A/metabolism , Renin-Angiotensin System/genetics , Risk Factors
2.
Article in English | LILACS | ID: lil-618185

ABSTRACT

Several health organizations have classified diabetes mellitus, a metabolic syndrome, as the epidemic of the century, since it affects millions of people worldwide and is one of the top ten causes of death. Type 1 diabetes is considered to be an autoimmune disease, in which autoaggressive T cells infiltrate the islets of Langerhans in the pancreas, leading to the destruction of insulin producing beta cells. The risk of the disease is modulated by genetic factors, mainly genes coding for human leukocyte antigens (HLA). However, the incidence of this disease has increased significantly during the recent decades, which cannot be explained only by genetic factors. Environmental perturbations have also been associated to the development of diabetes. Among these factors, viral triggers have been implicated; particularly enteroviruses, which have been associated to the induction of the disease. Supporting the hypothesis, numerous lines of evidence coming from mouse models and patients with this type of diabetes have shown the association. The present review aims to provide some understanding of how type 1 diabetes occurs and the possible role of enterovirus in this pathology.


Subject(s)
Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 1/genetics , Enterovirus Infections/epidemiology , Autoimmune Diseases
3.
Braz J Med Biol Res ; 39(6): 795-9, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16751986

ABSTRACT

The present study investigates the antinociceptive effect of the pyrazolyl-thiazole derivative 2-(5-trichloromethyl-5-hydroxy-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl)-4-(4-bromophenyl)-5-methylthiazole (B50) in mice. Male albino Swiss mice (30-40 g) were used in the acetic acid-induced abdominal writhes and tail-immersion tests. B50 caused dose-dependent antinociception (8, 23 and 80 micromol/kg, s.c.) in the acetic acid writhing assay (number of writhes: vehicle: 27.69 +/- 6.15; B50 (8 micromol/kg): 16.92 +/- 3.84; B50 (23 micromol/kg): 13.85 +/- 3.84; B50 (80 micromol/kg): 9.54 +/- 3.08; data are reported as means +/- SEM for 9 animals per group). On the other hand, B50 did not cause antinociception in the tail immersion assay. Naloxone (2.75 micromol/kg, s.c.) prevented B50-induced antinociception (number of writhes: vehicle-saline: 31.11 +/- 3.15; vehicle-naloxone: 27.41 +/- 3.70; B50 (80 micromol/kg)-saline: 8.70 +/- 3.33; B50 (80 micromol/kg)-naloxone: 31.84 +/- 4.26; morphine-saline: 2.04 +/- 3.52; morphine-naloxone: 21.11 +/- 4.26; 8-9 animals per group). The removal of the methyl group of the thiazole ring of B50 or substitution of the bromo substituent with the methyl at position 4 of the phenyl group, which is attached to the thiazole ring of B50, resulted in loss of activity, suggesting that these substituents are important for antinociceptive activity. B50 had no effect on spontaneous locomotion or rotarod performance, indicating that the antinociceptive effect of B50 is not related to nonspecific motor effects. The antinociceptive profile of B50 seems to be closer to nonsteroidal anti-inflammatory drugs than to classic opioid agents, since it had no analgesic effect in a thermally motivated test.


Subject(s)
Analgesics/pharmacology , Pain Measurement/drug effects , Pyrazoles/pharmacology , Thiazoles/pharmacology , Acetic Acid , Animals , Dose-Response Relationship, Drug , Male , Mice , Motor Activity/drug effects , Naloxone/pharmacology , Narcotic Antagonists/pharmacology , Pyrazoles/chemistry , Reaction Time , Thiazoles/chemistry
4.
Braz. j. med. biol. res ; 39(6): 795-799, June 2006. graf
Article in English | LILACS | ID: lil-428270

ABSTRACT

The present study investigates the antinociceptive effect of the pyrazolyl-thiazole derivative 2-(5-trichloromethyl-5-hydroxy-3-phenyl-4,5-dihydro-1 H-pyrazol-1-yl)-4-(4-bromophenyl)-5-methylthiazole (B50) in mice. Male albino Swiss mice (30-40 g) were used in the acetic acid-induced abdominal writhes and tail-immersion tests. B50 caused dose-dependent antinociception (8, 23 and 80 µmol/kg, sc) in the acetic acid writhing assay (number of writhes: vehicle: 27.69 ± 6.15; B50 (8 µmol/kg): 16.92 ± 3.84; B50 (23 µmol/kg): 13.85 ± 3.84; B50 (80 µmol/kg): 9.54 ± 3.08; data are reported as means ± SEM for 9 animals per group). On the other hand, B50 did not cause antinociception in the tail immersion assay. Naloxone (2.75 µmol/kg, sc) prevented B50-induced antinociception (number of writhes: vehicle-saline: 31.11 ± 3.15; vehicle-naloxone: 27.41 ± 3.70; B50 (80 µmol/kg)-saline: 8.70 ± 3.33; B50 (80 µmol/kg)-naloxone: 31.84 ± 4.26; morphine-saline: 2.04 ± 3.52; morphine-naloxone: 21.11 ± 4.26; 8-9 animals per group). The removal of the methyl group of the thiazole ring of B50 or substitution of the bromo substituent with the methyl at position 4 of the phenyl group, which is attached to the thiazole ring of B50, resulted in loss of activity, suggesting that these substituents are important for antinociceptive activity. B50 had no effect on spontaneous locomotion or rotarod performance, indicating that the antinociceptive effect of B50 is not related to nonspecific motor effects. The antinociceptive profile of B50 seems to be closer to nonsteroidal anti-inflammatory drugs than to classic opioid agents, since it had no analgesic effect in a thermally motivated test.


Subject(s)
Animals , Male , Mice , Analgesics/pharmacology , Pain Measurement/drug effects , Pyrazoles/pharmacology , Thiazoles/pharmacology , Acetic Acid , Dose-Response Relationship, Drug , Motor Activity/drug effects , Naloxone/pharmacology , Narcotic Antagonists/pharmacology , Pyrazoles/chemistry , Reaction Time , Thiazoles/chemistry
5.
Braz. j. med. biol. res ; 37(10): 1531-1540, Oct. 2004. tab, graf
Article in English | LILACS | ID: lil-383035

ABSTRACT

The antinociceptive effect of six novel synthetic pyrazolines (3-ethoxymethyl-5-ethoxycarbonyl-1H-pyrazole (Pz 1) and its corresponding 1-substituted methyl (Pz 2) and phenyl (Pz 3) analogues, and 3-(1-ethoxyethyl)-5-ethoxycarbonyl-1H-pyrazole (Pz 4) and its corresponding 1-substituted methyl (Pz 5) and phenyl (Pz 6) analogues) was evaluated by the tail immersion test in adult male albino mice. The animals (N = 11-12 in each group) received vehicle (5 percent Tween 80, 10 ml/kg, sc) or 1.5 mmol/kg of each of the pyrazolines (Pz 1-Pz 6), sc. Fifteen, thirty and sixty minutes after drug administration, the mice were subjected to the tail immersion test. Thirty minutes after drug administration Pz 2 and Pz 3 increased tail withdrawal latency (vehicle = 3.4 ± 0.2; Pz 2 = 5.2 ± 0.4; Pz 3 = 5.9 ± 0.4 s; mean ± SEM), whereas the other pyrazolines did not present antinociceptive activity. Dose-effect curves (0.15 to 1.5 mmol/kg) were constructed for the bioactive pyrazolines. Pz 2 (1.5 mmol/kg, sc) impaired motor coordination in the rotarod and increased immobility in the open-field test. Pz 3 did not alter rotarod performance and spontaneous locomotion, but increased immobility in the open field at the dose of 1.5 mmol/kg. The involvement of opioid mechanisms in the pyrazoline-induced antinociception was investigated by pretreating the animals with naloxone (2.75 µmol/kg, sc). Naloxone prevented Pz 3- but not Pz 2-induced antinociception. Moreover, naloxone pretreatment did not alter Pz 3-induced immobility. We conclude that Pz 3-induced antinociception involves opioid mechanisms but this is not the case for Pz 2.


Subject(s)
Animals , Male , Mice , Analgesics , Pain Measurement , Pyrazoles , Analysis of Variance , Dose-Response Relationship, Drug , Reaction Time , Receptors, Opioid , Restraint, Physical
6.
Braz J Med Biol Res ; 37(10): 1531-40, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15448875

ABSTRACT

The antinociceptive effect of six novel synthetic pyrazolines (3-ethoxymethyl-5-ethoxycarbonyl-1H-pyrazole (Pz 1) and its corresponding 1-substituted methyl (Pz 2) and phenyl (Pz 3) analogues, and 3-(1-ethoxyethyl)-5-ethoxycarbonyl-1H-pyrazole (Pz 4) and its corresponding 1-substituted methyl (Pz 5) and phenyl (Pz 6) analogues) was evaluated by the tail immersion test in adult male albino mice. The animals (N = 11-12 in each group) received vehicle (5% Tween 80, 10 ml/kg, sc) or 1.5 mmol/kg of each of the pyrazolines (Pz 1-Pz 6), sc. Fifteen, thirty and sixty minutes after drug administration, the mice were subjected to the tail immersion test. Thirty minutes after drug administration Pz 2 and Pz 3 increased tail withdrawal latency (vehicle = 3.4 +/- 0.2; Pz 2 = 5.2 +/- 0.4; Pz 3 = 5.9 +/- 0.4 s; mean +/- SEM), whereas the other pyrazolines did not present antinociceptive activity. Dose-effect curves (0.15 to 1.5 mmol/kg) were constructed for the bioactive pyrazolines. Pz 2 (1.5 mmol/kg, sc) impaired motor coordination in the rotarod and increased immobility in the open-field test. Pz 3 did not alter rotarod performance and spontaneous locomotion, but increased immobility in the open field at the dose of 1.5 mmol/kg. The involvement of opioid mechanisms in the pyrazoline-induced antinociception was investigated by pretreating the animals with naloxone (2.75 micro mol/kg, sc). Naloxone prevented Pz 3- but not Pz 2-induced antinociception. Moreover, naloxone pretreatment did not alter Pz 3-induced immobility. We conclude that Pz 3-induced antinociception involves opioid mechanisms but this is not the case for Pz 2.


Subject(s)
Analgesics/pharmacology , Pain Measurement/drug effects , Pyrazoles/pharmacology , Animals , Dose-Response Relationship, Drug , Male , Mice , Reaction Time , Receptors, Opioid/drug effects , Restraint, Physical
7.
Braz J Med Biol Res ; 36(1): 119-23, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12532235

ABSTRACT

Surfactants are frequently used to improve solubilization of lipophilic drugs. Cremophor EL (CrEL) is a polyoxyethylated castor oil surfactant used to solubilize water-insoluble drugs such as anesthetic, antineoplastic, immunosuppressive and analgesic drugs, vitamins and new synthetic compounds, including potential analgesics. The antinociceptive effect of CrEL (3.2, 6.4 and 10.6 g/kg, in 10 ml/kg body weight, by gavage) on the abdominal writhing response induced by intraperitoneal administration of acetic acid (0.8%, 10 ml/kg body weight) and on the tail immersion test was investigated in mice. Control animals received castor oil (10 ml/kg body weight) or saline (0.9% NaCl, 10 ml/kg body weight). CrEL reduced nociception in a dose-dependent manner in both tests. At 10.6 g/kg, CrEL caused antinociception similar to that induced by dipyrone (300 mg/kg, by gavage) in the abdominal writhing test, and antinociception similar to that induced by morphine (20 mg/kg, by gavage) in the tail immersion test. The effect of castor oil was similar to that of saline in both assays. These data indicate that the appropriate controls should be used when evaluating the effects of potential antinociceptive agents dissolved in CrEL.


Subject(s)
Analgesics/administration & dosage , Glycerol/analogs & derivatives , Glycerol/administration & dosage , Pain Measurement/drug effects , Administration, Oral , Analgesics/pharmacology , Animals , Castor Oil/pharmacology , Dipyrone/pharmacology , Glycerol/pharmacology , Male , Mice , Morphine/pharmacology , Pain Measurement/methods
8.
Braz. j. med. biol. res ; 36(1): 119-123, Jan. 2003. graf
Article in English | LILACS | ID: lil-326311

ABSTRACT

Surfactants are frequently used to improve solubilization of lipophilic drugs. Cremophor EL (CrEL) is a polyoxyethylated castor oil surfactant used to solubilize water-insoluble drugs such as anesthetic, antineoplastic, immunosuppressive and analgesic drugs, vitamins and new synthetic compounds, including potential analgesics. The antinociceptive effect of CrEL (3.2, 6.4 and 10.6 g/kg, in 10 ml/kg body weight, by gavage) on the abdominal writhing response induced by intraperitoneal administration of acetic acid (0.8 percent, 10 ml/kg body weight) and on the tail immersion test was investigated in mice. Control animals received castor oil (10 ml/kg body weight) or saline (0.9 percent NaCl, 10 ml/kg body weight). CrEL reduced nociception in a dose-dependent manner in both tests. At 10.6 g/kg, CrEL caused antinociception similar to that induced by dipyrone (300 mg/kg, by gavage) in the abdominal writhing test, and antinociception similar to that induced by morphine (20 mg/kg, by gavage) in the tail immersion test. The effect of castor oil was similar to that of saline in both assays. These data indicate that the appropriate controls should be used when evaluating the effects of potential antinociceptive agents dissolved in CrEL


Subject(s)
Animals , Male , Mice , Analgesics , Glycerol , Pain Measurement , Administration, Oral , Analgesics , Castor Oil , Dipyrone , Morphine , Pain Measurement
9.
Braz J Med Biol Res ; 33(9): 1069-73, 2000 Sep.
Article in English | MEDLINE | ID: mdl-10973140

ABSTRACT

The pharmacological effects of 4-phenyl-2-trichloromethyl-3H-1, 5-benzodiazepine hydrogen sulfate (PTMB), a novel synthetic benzodiazepine, were examined in mice. In the elevated plus-maze test of anxiety, 0.3-1 mg/kg diazepam ip (F(3,53) = 3.78; P<0.05) and 1-10 mg/kg PTMB ip increased (F(5,98) = 3.26; P<0.01), whereas 2 mg/kg picrotoxin ip decreased (F(3,59) = 8.32; P<0.001) the proportion of time spent in the open arms, consistent with an anxiolytic action of both benzodiazepines, and an anxiogenic role for picrotoxin. In the holeboard, 1.0 mg/kg diazepam ip increased (F(3,54) = 2.78; P<0.05) and 2 mg/kg picrotoxin ip decreased (F(3, 59) = 4.69; P<0.01) locomotor activity. Rotarod assessment revealed that 1 mg/kg diazepam ip and 3, 10 and 30 mg/kg PTMB ip produced significant motor incoordination compared to vehicle control (F(4, 70) = 7.6; P<0.001). These data suggest that the recently synthesized PTMB compound possesses anxiolytic activity and produces motor incoordination similar to those observed with diazepam.


Subject(s)
Anti-Anxiety Agents/pharmacology , Benzodiazepines/pharmacology , Diazepam/pharmacology , Motor Activity/drug effects , Analysis of Variance , Animals , Behavior, Animal/drug effects , Convulsants/pharmacology , Male , Maze Learning/drug effects , Mice , Picrotoxin/pharmacology
10.
Braz. j. med. biol. res ; 33(9): 1069-73, Sept. 2000.
Article in English | LILACS | ID: lil-267976

ABSTRACT

The pharmacological effects of 4-phenyl-2-trichloromethyl-3H-1,5-benzodiazepine hydrogen sulfate (PTMB), a novel synthetic benzodiazepine, were examined in mice. In the elevated plus-maze test of anxiety, 0.3-1 mg/kg diazepam ip (F(3,53) = 3.78; P<0.05) and 1-10 mg/kg PTMB ip increased (F(5,98) = 3.26; P<0.01), whereas 2 mg/kg picrotoxin ip decreased (F(3,59) = 8.32; P<0.001) the proportion of time spent in the open arms, consistent with an anxiolytic action of both benzodiazepines, and an anxiogenic role for picrotoxin. In the holeboard, 1.0 mg/kg diazepam ip increased (F(3,54) = 2.78; P<0.05) and 2 mg/kg picrotoxin ip decreased (F(3,59) = 4.69; P<0.01) locomotor activity. Rotarod assessment revealed that 1 mg/kg diazepam ip and 3, 10 and 30 mg/kg PTMB ip produced significant motor incoordination compared to vehicle control (F(4,70) = 7.6; P<0.001). These data suggest that the recently synthesized PTMB compound possesses anxiolytic activity and produces motor incoordination similar to those observed with diazepam


Subject(s)
Animals , Mice , Male , Anti-Anxiety Agents/pharmacology , Benzodiazepines/pharmacology , Diazepam/pharmacology , Motor Activity/drug effects , Analysis of Variance , Behavior, Animal/drug effects , Convulsants/pharmacology , Maze Learning/drug effects , Picrotoxin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...