Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 560: 347-356, 2019 Apr 05.
Article in English | MEDLINE | ID: mdl-30797075

ABSTRACT

The use of nanoparticles as drug carriers in the field of skeletal muscle diseases has been poorly addressed and the interaction of nanoparticles with skeletal muscle cells has been investigated almost exclusively on C2C12 murine myoblasts. In this study we investigated the effects poly(lactide-co-glycolide) nanoparticles, mesoporous silica nanoparticles and liposomes, on the viability of primary human myoblasts and analyzed their cellular uptake and intracellular distribution in both primary human myoblasts and myotubes. Our data demonstrate that poly(lactide-co-glycolide) nanoparticles do not negatively affect myoblasts viability, contrarily to mesoporous silica nanoparticles and liposomes that induce a decrease in cell viability at the highest doses and longest incubation time. Poly(lactide-co-glycolide) nanoparticles and mesoporous silica nanoparticles are internalized by endocytosis, poly(lactide-co-glycolide) nanoparticles undergo endosomal escape whereas mesoporous silica nanoparticles always occur within vacuoles. Liposomes were rarely observed within the cells. The uptake of all tested nanoparticles was less prominent in primary human myotubes as compared to myoblasts. Our findings represent the first step toward the characterization of the interaction between nanoparticles and primary human muscle cells and suggest that poly(lactide-co-glycolide) nanoparticles might find an application for drug delivery to skeletal muscle.


Subject(s)
Muscle Fibers, Skeletal/metabolism , Myoblasts/metabolism , Nanoparticles , Silicon Dioxide/chemistry , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Delivery Systems , Endocytosis , Humans , Liposomes , Polyglactin 910/chemistry , Porosity , Time Factors
2.
Chem Sci ; 8(10): 6836-6851, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-29147509

ABSTRACT

The small pore Cu-CHA zeolite is attracting increasing attention as a versatile platform to design novel single-site catalysts for deNO x applications and for the direct conversion of methane to methanol. Understanding at the atomic scale how the catalyst composition influences the Cu-species formed during thermal activation is a key step to unveil the relevant composition-activity relationships. Herein, we explore by in situ XAS the impact of Cu-CHA catalyst composition on temperature-dependent Cu-speciation and reducibility. Advanced multivariate analysis of in situ XANES in combination with DFT-assisted simulation of XANES spectra and multi-component EXAFS fits as well as in situ FTIR spectroscopy of adsorbed N2 allow us to obtain unprecedented quantitative structural information on the complex dynamics during the speciation of Cu-sites inside the framework of the CHA zeolite.

3.
Eur J Histochem ; 60(2): 2640, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27349319

ABSTRACT

In order to design valid protocols for drug release via nanocarriers, it is essential to know the mechanisms of cell internalization, the interactions with organelles, and the intracellular permanence and degradation of nanoparticles (NPs) as well as the possible cell alteration or damage induced. In the present study, the intracellular fate of liposomes, polymeric NPs and mesoporous silica NPs (MSN) has been investigated in an in vitro cell system by fluorescence and transmission electron microscopy. The tested nanocarriers proved to be characterized by specific interactions with the cell: liposomes enter the cells probably by fusion with the plasma membrane and undergo rapid cytoplasmic degradation; polymeric NPs are internalized by endocytosis, occur in the cytoplasm both enclosed in endosomes and free in the cytosol, and then undergo massive degradation by lysosome action; MSN are internalized by both endocytosis and phagocytosis, and persist in the cytoplasm enclosed in vacuoles. No one of the tested nanocarriers was found to enter the nucleus. The exposure to the different nanocarriers did not increase cell death; only liposomes induced a reduction of cell population after long incubation times, probably due to cell overloading. No subcellular damage was observed to be induced by polymeric NPs and MSN, whereas transmission electron microscopy revealed cytoplasm alterations in liposome-treated cells. This important information on the structural and functional relationships between nanocarriers designed for drug delivery and cultured cells further proves the crucial role of microscopy techniques in nanotechnology.


Subject(s)
Cytoplasm/metabolism , Endosomes/metabolism , Lysosomes/metabolism , Nanoparticles/metabolism , Silicon Dioxide/pharmacokinetics , HeLa Cells , Humans , Liposomes , Microscopy, Fluorescence , Nanoparticles/chemistry , Silicon Dioxide/chemistry
4.
Phys Chem Chem Phys ; 17(21): 13882-94, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-25946487

ABSTRACT

We report the synthesis and surface functionalization of MCM-41-like mesoporous silica nanoparticles (MSNs) with spheroidal shape and particle size of 141 ± 41 nm. The success of surface functionalization with aminopropyl and sodium ethylcarboxylate groups (giving amino-MSN and carboxy-MSN, respectively) was ascertained by infrared spectroscopy and ζ potential measurements. The former showed the decrease of surface silanol groups and the corresponding appearance of signals related to NH2 bending mode (δNH2) at 1595 cm(-1) and COO(-) stretching (νas and νsym) at 1562 and 1418 cm(-1). The latter showed a change in surface charge, in that the isoelectric point (IEP) changed from pH 3-4.5 to 8.5 when the MSN was functionalized with the amino groups, while carboxy-MSN showed a more negative charge in the whole pH range with respect to MSN. The hydrophilic character of the prepared materials was ascertained by quantitative microgravimetric measurements, allowing the calculation of the average isosteric adsorption heat (q[combining macron]st). This was found to be 51 ± 3 kJ mol(-1), 61 ± 4, and 65 ± 3 kJ mol(-1) for MSN, amino-MSN, and carboxy-MSN samples, respectively. The increase in q[combining macron]st after functionalization can be ascribed to the specific interaction of water molecules with the functionalizing agents, in agreement with a higher basicity with respect to silanol groups. Moreover, the possibility of multiple H-bonding interactions of water molecules with the carboxylate anion is put forward to account for the higher water uptake with respect to parent MSN.


Subject(s)
Nanoparticles/chemistry , Silicon Dioxide/chemistry , Adsorption , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Nanoparticles/ultrastructure , Particle Size , Porosity , Silanes/chemistry , Silicon Dioxide/chemical synthesis , Surface Properties , Thermodynamics , Water/chemistry
5.
Phys Chem Chem Phys ; 15(32): 13275-87, 2013 Aug 28.
Article in English | MEDLINE | ID: mdl-23860729

ABSTRACT

In this work, the interactions of methyl tert-butyl ether (MTBE) on different dealuminated high silica zeolites were studied by means of both experimental and computational approaches. Zeolites with different textural and surface features were selected as adsorbents and the effect of their physico-chemical properties (i.e. pore size architecture and type and amount of surface OH sites) on sorption capacity were studied. High silica mordenite (MOR) and Y zeolites (both with a SiO2/Al2O3 ratio of 200) and ZSM-5 solid (SiO2/Al2O3 ratio of 500) were selected as model sorbents. By combining FTIR and SS-NMR (both (1)H and (13)C CPMAS NMR) spectroscopy it was possible to follow accurately the MTBE adsorption process on highly defective MOR characterized by a high concentration of surface SiOH groups. The adsorption process is found to occur in different steps and to involve isolated silanol sites, weakly interacting silanols, and the siloxane network of the zeolite, respectively. H-bonding and van der Waals interactions occurring between the mordenite surface and MTBE molecules were modeled by DFT calculations using a large cluster of the MOR structure where two adjacent side-pockets were fused in a large micropore to simulate a dealumination process leading to silanol groups. This is the locus where MTBE molecules are more strongly bound and stabilized. FTIR spectroscopy and gravimetric measurements allowed determination of the interaction strength and sorption capacities of all three zeolites. In the case of both Y and MOR zeolites, medium-weak H-bonding with isolated silanols (both on internal and external zeolite surfaces) and van der Waals interactions are responsible for MTBE adsorption, whereas ZSM-5, in which a negligible amount of surface silanol species is present, displays a much lower amount of adsorbed MTBE retained mainly through van der Waals interactions with zeolite siloxane network.


Subject(s)
Methyl Ethers/chemistry , Silicon Dioxide/chemistry , Zeolites/chemistry , Quantum Theory
6.
Phys Chem Chem Phys ; 14(32): 11318-26, 2012 Aug 28.
Article in English | MEDLINE | ID: mdl-22785459

ABSTRACT

As part of a recent research effort aimed at employing mesoporous materials for controlled drug delivery, this paper presents MCM-41 as a carrier for topical application, using Trolox as a model unstable guest molecule. The complexes between Trolox and MCM-41 were prepared by employing different inclusion procedures, varying solvent, method and pretreatment of the silica matrix. The objectives of this study were to determine Trolox loading, analyze its integrity and availability after immobilization on mesoporous silica, evaluate MCM-41 influence on Trolox photodegradation and establish whether the preparation method significantly influences complex properties. The characterization analyses (XRD, TGA, DSC and FTIR) confirmed the hydrogen-bonding interaction and Trolox structure preservation. Gas-volumetric analysis showed a consistent decrease in surface area and in pore volume and diameter with respect to bare MCM-41 indicating that Trolox was mainly located within mesopores. In vitro diffusion tests showed a slower release of Trolox after inclusion in the MCM-41 matrix; at the same time UV irradiation studies highlighted an increased photostability for the complex particularly in O/W emulsion. Moreover the radical scavenging activity of Trolox was maintained after immobilization. In all cases, differences were observed in all tested samples, suggesting that results could be optimized by modifying the inclusion procedure and by improving the guest loading.


Subject(s)
Antioxidants/administration & dosage , Chromans/administration & dosage , Drug Carriers/chemistry , Silicon Dioxide/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Biphenyl Compounds/chemistry , Calorimetry, Differential Scanning , Chromans/chemistry , Chromans/pharmacology , Diffusion , Membranes, Artificial , Photolysis , Picrates/chemistry , Porosity , Spectroscopy, Fourier Transform Infrared , Thermogravimetry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...