Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Dev Cell ; 50(2): 184-196.e4, 2019 07 22.
Article in English | MEDLINE | ID: mdl-31204170

ABSTRACT

Preventing inappropriate gene expression in time and space is as fundamental as triggering the activation of tissue- or cell-type-specific factors at the correct developmental stage and in the correct cells. Here, we study the impact of Polycomb repressive complex 2 (PRC2) function on HoxA gene regulation. We analyze chromatin conformation of the HoxA cluster and its regulatory regions and show that in addition to the well-known role of PRC2 in silencing Hox genes via direct binding, its function is required for the changes in HoxA long-range interactions distinguishing proximal limbs from distal limbs. This effect stems from the differential PRC2 occupancy over the HoxA cluster and, at least in part, from the ability of PRC2-bound loci to engage in long-range contacts. Unexpectedly, PRC2 also impacts chromatin conformation in a way that promotes enhancer-promoter contacts required for proper HoxA expression, pointing to a dual role of PRC2 in gene regulation.


Subject(s)
Chromatin/metabolism , Enhancer Elements, Genetic , Gene Expression Regulation , Homeodomain Proteins/metabolism , Lower Extremity/growth & development , Polycomb Repressive Complex 2/metabolism , Promoter Regions, Genetic , Animals , Chromatin/genetics , Homeodomain Proteins/genetics , Lower Extremity/physiology , Mice , Polycomb Repressive Complex 2/genetics
2.
Biochim Biophys Acta Gene Regul Mech ; 1862(3): 329-342, 2019 03.
Article in English | MEDLINE | ID: mdl-30660758

ABSTRACT

N6-methyl adenosine (m6A) is the most prevalent and evolutionarily conserved, modification of polymerase II transcribed RNAs. By post-transcriptionally controlling patterns of gene expression, m6A deposition is crucial for organism reproduction, development and likely stress responses. m6A mostly mediates its effect by recruiting reader proteins that either directly accommodate the modified residue in a hydrophobic pocket formed by their YTH domain, or otherwise have their affinity positively influenced by the presence of m6A. We firstly describe here the evolutionary history, and review known molecular and physiological roles of eukaryote YTH readers. In the second part, we present non YTH-proteins whose roles as m6A readers largely remain to be explored. The diversity and multiplicity of m6A readers together with the possibility to regulate their expression and function in response to various cues, offers a multitude of possible combinations to rapidly and finely tune gene expression patterns and hence cellular plasticity. This article is part of a Special Issue entitled: mRNA modifications in gene expression control edited by Dr. Soller Matthias and Dr. Fray Rupert.


Subject(s)
Adenine/analogs & derivatives , Epigenesis, Genetic , Methyltransferases/metabolism , RNA Processing, Post-Transcriptional , RNA, Messenger/genetics , Transcriptome , Adenine/metabolism , Animals , Humans , Methyltransferases/genetics , RNA, Messenger/metabolism
3.
Methods Mol Biol ; 1622: 91-100, 2017.
Article in English | MEDLINE | ID: mdl-28674803

ABSTRACT

The development of the CRISPR/Cas9 technology has provided powerful methods to target genetic alterations. However, investigating the function of genes essential for cell survival remains problematic, because genetic ablation of these genes results in cell death. As a consequence, cells recombined at the targeted gene and fully depleted of the gene product cannot be obtained. RNA interference is well suited for the study of essential genes, but this approach often results in a partial depletion of the targeted gene product, which can lead to misinterpretations. We previously developed the pHYPER shRNA vector, a high efficiency RNA interference vector, which is based on a 2.5-kb mouse genomic fragment encompassing the H1 gene. We provide here a pHYPER-based protocol optimized to study the function of essential gene products in mouse embryonic stem cells.


Subject(s)
Embryonic Stem Cells/metabolism , Genes, Essential , Loss of Function Mutation , Animals , Electroporation , Mice , Plasmids/genetics , RNA Interference , RNA, Small Interfering/genetics , Transfection
4.
Nucleic Acids Res ; 44(6): 2564-76, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-26615198

ABSTRACT

A mechanism by which control DNA elements regulate transcription over large linear genomic distances is by achieving close physical proximity with genes, and looping of the intervening chromatin paths. Alterations of such regulatory 'chromatin looping' systems are likely to play a critical role in human genetic disease at large. Here, we studied the spatial organization of a ≈790 kb locus encompassing the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Dysregulation of CFTR is responsible for cystic fibrosis, which is the most common lethal genetic disorder in Caucasian populations. CFTR is a relatively large gene of 189 kb with a rather complex tissue-specific and temporal expression profile. We used chromatin conformation at the CFTR locus to identify new DNA sequences that regulate its transcription. By comparing 5C chromatin interaction maps of the CFTR locus in expressing and non-expressing human primary cells, we identified several new contact points between the CFTR promoter and its surroundings, in addition to regions featuring previously described regulatory elements. We demonstrate that two of these novel interacting regions cooperatively increase CFTR expression, and suggest that the new enhancer elements located on either side of the gene are brought together through chromatin looping via CTCF.


Subject(s)
Chromatin/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Enhancer Elements, Genetic , Promoter Regions, Genetic , Chromatin/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Genetic Loci , Healthy Volunteers , Humans , Nasal Cavity/cytology , Nasal Cavity/metabolism , Primary Cell Culture , Skin/cytology , Skin/pathology , Transcription, Genetic
5.
BMC Genomics ; 16: 607, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26271925

ABSTRACT

BACKGROUND: In higher eukaryotes, the genome is partitioned into large "Topologically Associating Domains" (TADs) in which the chromatin displays favoured long-range contacts. While a crumpled/fractal globule organization has received experimental supports at higher-order levels, the organization principles that govern chromatin dynamics within these TADs remain unclear. Using simple polymer models, we previously showed that, in mouse liver cells, gene-rich domains tend to adopt a statistical helix shape when no significant locus-specific interaction takes place. RESULTS: Here, we use data from diverse 3C-derived methods to explore chromatin dynamics within mouse and Drosophila TADs. In mouse Embryonic Stem Cells (mESC), that possess large TADs (median size of 840 kb), we show that the statistical helix model, but not globule models, is relevant not only in gene-rich TADs, but also in gene-poor and gene-desert TADs. Interestingly, this statistical helix organization is considerably relaxed in mESC compared to liver cells, indicating that the impact of the constraints responsible for this organization is weaker in pluripotent cells. Finally, depletion of histone H1 in mESC alters local chromatin flexibility but not the statistical helix organization. In Drosophila, which possesses TADs of smaller sizes (median size of 70 kb), we show that, while chromatin compaction and flexibility are finely tuned according to the epigenetic landscape, chromatin dynamics within TADs is generally compatible with an unconstrained polymer configuration. CONCLUSIONS: Models issued from polymer physics can accurately describe the organization principles governing chromatin dynamics in both mouse and Drosophila TADs. However, constraints applied on this dynamics within mammalian TADs have a peculiar impact resulting in a statistical helix organization.


Subject(s)
Chromatin/metabolism , DNA/chemistry , Drosophila melanogaster/genetics , Models, Molecular , Models, Statistical , Animals , Chromatin/chemistry , Chromatin/genetics , Chromatin Assembly and Disassembly , Epigenesis, Genetic , Liver/metabolism , Mice , Mouse Embryonic Stem Cells/cytology , Nucleic Acid Conformation
6.
Genes Dev ; 28(24): 2778-91, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25512564

ABSTRACT

Although important for gene regulation, most studies of genome organization use either fluorescence in situ hybridization (FISH) or chromosome conformation capture (3C) methods. FISH directly visualizes the spatial relationship of sequences but is usually applied to a few loci at a time. The frequency at which sequences are ligated together by formaldehyde cross-linking can be measured genome-wide by 3C methods, with higher frequencies thought to reflect shorter distances. FISH and 3C should therefore give the same views of genome organization, but this has not been tested extensively. We investigated the murine HoxD locus with 3C carbon copy (5C) and FISH in different developmental and activity states and in the presence or absence of epigenetic regulators. We identified situations in which the two data sets are concordant but found other conditions under which chromatin topographies extrapolated from 5C or FISH data are not compatible. We suggest that products captured by 3C do not always reflect spatial proximity, with ligation occurring between sequences located hundreds of nanometers apart, influenced by nuclear environment and chromatin composition. We conclude that results obtained at high resolution with either 3C methods or FISH alone must be interpreted with caution and that views about genome organization should be validated by independent methods.


Subject(s)
Chromatin/chemistry , Chromatin/metabolism , Genome/genetics , In Situ Hybridization, Fluorescence/standards , Staining and Labeling/standards , Animals , Cell Differentiation , Cells, Cultured , Embryonic Stem Cells/cytology , Genetic Techniques/standards , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mice , Mutation , Polycomb-Group Proteins/genetics , Protein Structure, Tertiary
7.
Hum Genet ; 132(7): 811-22, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23546690

ABSTRACT

Chromosomal region 17q12-q21 is one of the best-replicated genome-wide association study (GWAS) hits and associated with childhood-onset asthma. However, the mechanism by which the genetic association is restricted to childhood-onset disease is unclear. During childhood, more boys than girls develop asthma. Therefore, we tested the hypothesis that the 17q12-q21 genetic association was sex-specific. Indeed, a TDT test showed that in the Saguenay-Lac-Saint-Jean familial collection, the 17q12-q21 association was significant among male, but not among female asthmatic subjects. We next hypothesized that the bias in the genetic association resulted from sex-specific and/or age-dependent DNA methylation at regulatory regions and determined the methylation profiles of five 17q12-q21 gene promoters using the bisulfite sequencing methylation assay. We identified a single regulatory region within the zona pellucida binding protein 2 (ZPBP2) gene, which showed statistically significant differences between males and females with respect to DNA methylation. DNA methylation also varied with age and was higher in adult males compared to boys. We have recently identified two functionally important polymorphisms, both within the ZPBP2 gene that influence expression levels of neighboring genes. Combined with the results of the present work, these data converge pointing to the same 5 kb region within the ZPBP2 gene as a critical region for both gene expression regulation and predisposition to asthma. Our data show that sex- and age-dependent DNA methylation may act as a modifier of genetic effects and influence the results of genetic association studies.


Subject(s)
Aging , Asthma/genetics , Chromosomes, Human, Pair 17/genetics , DNA Methylation/genetics , Genetic Loci , Sex Characteristics , Adolescent , Adult , Aged , Aged, 80 and over , Asthma/metabolism , Child , Child, Preschool , Chromosomes, Human, Pair 17/metabolism , Egg Proteins/genetics , Egg Proteins/metabolism , Female , Follow-Up Studies , Gene Expression Regulation/genetics , Humans , Infant, Newborn , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Middle Aged
8.
PLoS Genet ; 9(12): e1004018, 2013.
Article in English | MEDLINE | ID: mdl-24385922

ABSTRACT

HoxA genes exhibit central roles during development and causal mutations have been found in several human syndromes including limb malformation. Despite their importance, information on how these genes are regulated is lacking. Here, we report on the first identification of bona fide transcriptional enhancers controlling HoxA genes in developing limbs and show that these enhancers are grouped into distinct topological domains at the sub-megabase scale (sub-TADs). We provide evidence that target genes and regulatory elements physically interact with each other through contacts between sub-TADs rather than by the formation of discreet "DNA loops". Interestingly, there is no obvious relationship between the functional domains of the enhancers within the limb and how they are partitioned among the topological domains, suggesting that sub-TAD formation does not rely on enhancer activity. Moreover, we show that suppressing the transcriptional activity of enhancers does not abrogate their contacts with HoxA genes. Based on these data, we propose a model whereby chromatin architecture defines the functional landscapes of enhancers. From an evolutionary standpoint, our data points to the convergent evolution of HoxA and HoxD regulation in the fin-to-limb transition, one of the major morphological innovations in vertebrates.


Subject(s)
Enhancer Elements, Genetic , Extremities/growth & development , Homeodomain Proteins/genetics , Transcription, Genetic , Animals , Evolution, Molecular , Gene Expression Regulation, Developmental , Humans , Mice , Vertebrates/genetics , Vertebrates/growth & development
9.
Hum Genet ; 131(7): 1161-71, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22271045

ABSTRACT

Phenotypic variation results from variation in gene expression, which is modulated by genetic and/or epigenetic factors. To understand the molecular basis of human disease, interaction between genetic and epigenetic factors needs to be taken into account. The asthma-associated region 17q12-q21 harbors three genes, the zona pellucida binding protein 2 (ZPBP2), gasdermin B (GSDMB) and ORM1-like 3 (ORMDL3), that show allele-specific differences in expression levels in lymphoblastoid cell lines (LCLs) and CD4+ T cells. Here, we report a molecular dissection of allele-specific transcriptional regulation of the genes within the chromosomal region 17q12-q21 combining in vitro transfection, formaldehyde-assisted isolation of regulatory elements, chromatin immunoprecipitation and DNA methylation assays in LCLs. We found that a single nucleotide polymorphism rs4795397 influences the activity of ZPBP2 promoter in vitro in an allele-dependent fashion, and also leads to nucleosome repositioning on the asthma-associated allele. However, variable methylation of exon 1 of ZPBP2 masks the strong genetic effect on ZPBP2 promoter activity in LCLs. In contrast, the ORMDL3 promoter is fully unmethylated, which allows detection of genetic effects on its transcription. We conclude that the cis-regulatory effects on 17q12-q21 gene expression result from interaction between several regulatory polymorphisms and epigenetic factors within the cis-regulatory haplotype region.


Subject(s)
Asthma/genetics , Chromosomes, Human, Pair 17/genetics , Egg Proteins/genetics , Epigenesis, Genetic , Membrane Proteins/genetics , Base Sequence , Cell Line , DNA Methylation , Gene Expression Profiling , Gene Expression Regulation , Genetic Variation , Humans , Neoplasm Proteins/genetics , Phenotype , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Sequence Analysis, DNA
10.
Methods Mol Biol ; 650: 85-100, 2010.
Article in English | MEDLINE | ID: mdl-20686945

ABSTRACT

RNA interference is widely used for loss-of-function studies in mammalian cells. As an alternative to the transfection of small RNAs, plasmid vectors have been developed to express short hairpin RNAs (shRNAs). We engineered the pHYPER shRNA vector, which is based on a 2.5-kb mouse genomic fragment encompassing the H1 gene. We have previously shown that this shRNA vector is highly efficient for both transient transfection studies in embryonic stem (ES) cells and generation of stable ES cell lines. Following ES cell transfection, the H1 promoter of pHYPER is recognized by the RNA polymerase III machinery, which directs the transcription of the shRNA. We provide here detailed protocols that explain how to optimize the use of pHYPER in ES cells.


Subject(s)
Embryonic Stem Cells/metabolism , Genetic Vectors/genetics , Plasmids/genetics , RNA, Small Interfering/physiology , Animals , Blotting, Western , Cells, Cultured , Chromatin Assembly Factor-1/genetics , Chromatin Assembly Factor-1/metabolism , Electrophoresis, Polyacrylamide Gel , Mice , Promoter Regions, Genetic/genetics , RNA, Small Interfering/genetics
11.
Mamm Genome ; 21(7-8): 377-87, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20577743

ABSTRACT

Meiotic silencing of unsynapsed chromatin (MSUC) occurs in the germ cells of translocation carriers and may cause meiotic arrest and infertility. We hypothesized that if bypassing meiotic checkpoints MSUC may cause epigenetic defects in sperm. We investigated the meiotic behavior of the Robertsonian translocation Rb (8.12) in mice. The unsynapsed 8 and 12 trivalent was associated with the XY body during early and mid-pachynema in heterozygous Rb (8.12) carriers, suggesting possible silencing of pericentromeric genes, such as the Dnmt3a gene. In wild-type mice, DNMT3A protein showed a dramatic accumulation in the nucleus during the mid-pachytene stage and distinct association with the XY body. In translocation carriers, DNMT3A was less abundant in a proportion of pachytene spermatocytes that also had unsynapsed pericentromeric regions of chromosomes 8 and 12. The same mice had incomplete methylation of the imprinted H19 differentially methylated region (DMR) in sperm. We propose that impaired H19 imprint establishment results from lack of synapsis in chromosomes 8 and 12 probably through transient silencing of a chromosome 8 or 12 gene during pachynema. Furthermore, our findings support the notion that imprint establishment at the H19 locus extends into pachynema.


Subject(s)
Genomic Imprinting/physiology , Translocation, Genetic/genetics , Animals , Cell Nucleus/metabolism , Chromosome Pairing/genetics , Chromosome Pairing/physiology , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A , Female , Genomic Imprinting/genetics , Heterozygote , Male , Meiosis/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Repressor Proteins/genetics , Repressor Proteins/metabolism , Spermatocytes/metabolism
12.
Epigenetics ; 5(1): 50-60, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-20026906

ABSTRACT

DNA methylation patterns are often poorly conserved through cell culturing. To determine the effect of cell immortalization and culture on DNA methylation profiles, we analyzed methylation in the differentially methylated regions (DMR) of five imprinted domains: the intergenic (IG) DMR on chromosome 14q32; potassium voltage-gated channel, KQT-like subfamily, member 1, (KCNQ1); small nuclear ribonucleoprotein polypeptide N (SNRPN), mesoderm specific transcript homolog (MEST); and H19 in lymphoblastoid cell lines (LCLs). In the IG DMR we found an aberrant methylation pattern that was consistent through all the cell lines tested and significantly different from that of noncultured peripheral blood cells. Using a generalized linear mixed model to compare methylation profiles, we show that recently derived LCLs significantly differ from the CEPH LCLs. This implies a gradual cell-culture related deterioration of DNA methylation in the IG DMR with at least two steps that may be identified: loss of methylation at CG sites 1 and 8; and loss of allelic differences in DNA methylation. The IG DMR methylation profile also confirms the high level of clonality of the CEPH LCLs. We conclude that non-transformed primary cells may be less susceptible to epigenetic anomalies and therefore may provide a more accurate reflection of gene expression in vivo.


Subject(s)
Cell Culture Techniques/methods , DNA Methylation , Epigenesis, Genetic , Genomic Imprinting , Lymphocytes/cytology , Adolescent , Adult , Aged , Aged, 80 and over , Cell Line , Chromosomes, Human, Pair 14 , Gene Expression Profiling , Gene Expression Regulation , Gene Silencing , Genetic Variation , Humans , Middle Aged
13.
Am J Hum Genet ; 85(3): 377-93, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19732864

ABSTRACT

Common SNPs in the chromosome 17q12-q21 region alter the risk for asthma, type 1 diabetes, primary biliary cirrhosis, and Crohn disease. Previous reports by us and others have linked the disease-associated genetic variants with changes in expression of GSDMB and ORMDL3 transcripts in human lymphoblastoid cell lines (LCLs). The variants also alter regulation of other transcripts, and this domain-wide cis-regulatory effect suggests a mechanism involving long-range chromatin interactions. Here, we further dissect the disease-linked haplotype and identify putative causal DNA variants via a combination of genetic and functional analyses. First, high-throughput resequencing of the region and genotyping of potential candidate variants were performed. Next, additional mapping of allelic expression differences in Yoruba HapMap LCLs allowed us to fine-map the basis of the cis-regulatory differences to a handful of candidate functional variants. Functional assays identified allele-specific differences in nucleosome distribution, an allele-specific association with the insulator protein CTCF, as well as a weak promoter activity for rs12936231. Overall, this study shows a common disease allele linked to changes in CTCF binding and nucleosome occupancy leading to altered domain-wide cis-regulation. Finally, a strong association between asthma and cis-regulatory haplotypes was observed in three independent family-based cohorts (p = 1.78 x 10(-8)). This study demonstrates the requirement of multiple parallel allele-specific tools for the investigation of noncoding disease variants and functional fine-mapping of human disease-associated haplotypes.


Subject(s)
Alleles , Asthma/genetics , Autoimmune Diseases/genetics , Chromatin Assembly and Disassembly/genetics , Egg Proteins/genetics , Membrane Proteins/genetics , Neoplasm Proteins/genetics , Adolescent , Asthma/complications , Autoimmune Diseases/complications , Base Sequence , Cell Line , Child , Chromosomes, Human, Pair 17/genetics , DNA Mutational Analysis , Egg Proteins/metabolism , Female , Genes, Reporter , Genetic Predisposition to Disease , Haplotypes , Humans , Male , Membrane Proteins/metabolism , Molecular Sequence Data , Neoplasm Proteins/metabolism , Pedigree , Polymorphism, Single Nucleotide/genetics , Regulatory Sequences, Nucleic Acid/genetics , White People/genetics
14.
Biotechniques ; 42(6): 738, 740-3, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17612297

ABSTRACT

RNA interference (RNAi) is a powerful method to generate loss-of-function phenotypes. Plasmid vectors with RNA polymerase III promoters have been developed to express short hairpin RNAs (shRNAs) in mammalian cells. In order to optimize the efficiency of these vectors in embryonic stem (ES) cells, we have constructed and tested several plasmids, based on the H1 promoter; that direct the expression of shRNAs. The original pSUPER vector was used as a reference in this study. This vector drives the expression of shRNAs from a basic 0.2-kb H1 promoter; which exhibits a variable expression when integrated into the genome of ES cells. We used a 2.5-kb mouse genomic fragment containing the H1 promoter to construct a new H1 shRNA vector pHYPER. A comparison of this vector with the basic 0.2-kb H1 vector showed that pHYPER directs the synthesis of higher amounts of shRNAs. Using epifluorescence and fluorescent-activated cell sorting (FACS) analysis, we demonstrated that pHYPER is 4-fold more active than the 0.2-kb H1-based vector after integration into the genome of mouse ES cells. We provide a new, improved H1 shRNA vector that is optimized for both transient transfection studies and the generation of stable ES cell lines.


Subject(s)
Embryonic Stem Cells/physiology , Genetic Vectors , RNA Interference , RNA, Small Interfering/genetics , Animals , Cell Line , Crosses, Genetic , Embryonic Stem Cells/cytology , Mice , Mice, Inbred C3H , Mice, Transgenic
15.
PLoS Genet ; 2(11): e181, 2006 Nov 03.
Article in English | MEDLINE | ID: mdl-17083276

ABSTRACT

During mammalian development, chromatin dynamics and epigenetic marking are important for genome reprogramming. Recent data suggest an important role for the chromatin assembly machinery in this process. To analyze the role of chromatin assembly factor 1 (CAF-1) during pre-implantation development, we generated a mouse line carrying a targeted mutation in the gene encoding its large subunit, p150CAF-1. Loss of p150CAF-1 in homozygous mutants leads to developmental arrest at the 16-cell stage. Absence of p150CAF-1 in these embryos results in severe alterations in the nuclear organization of constitutive heterochromatin. We provide evidence that in wild-type embryos, heterochromatin domains are extensively reorganized between the two-cell and blastocyst stages. In p150CAF-1 mutant 16-cell stage embryos, the altered organization of heterochromatin displays similarities to the structure of heterochromatin in two- to four-cell stage wild-type embryos, suggesting that CAF-1 is required for the maturation of heterochromatin during preimplantation development. In embryonic stem cells, depletion of p150CAF-1 using RNA interference results in the mislocalization, loss of clustering, and decondensation of pericentric heterochromatin domains. Furthermore, loss of CAF-1 in these cells results in the alteration of epigenetic histone methylation marks at the level of pericentric heterochromatin. These alterations of heterochromatin are not found in p150CAF-1-depleted mouse embryonic fibroblasts, which are cells that are already lineage committed, suggesting that CAF-1 is specifically required for heterochromatin organization in pluripotent embryonic cells. Our findings underline the role of the chromatin assembly machinery in controlling the spatial organization and epigenetic marking of the genome in early embryos and embryonic stem cells.


Subject(s)
Embryonic Stem Cells/physiology , Heterochromatin/metabolism , Pluripotent Stem Cells/physiology , Proteins/genetics , Proteins/physiology , Animals , Blastocyst/physiology , Embryonic Development , Epigenesis, Genetic , Exons , Exoribonucleases , Female , Gene Targeting , Male , Mice , Mice, Inbred C57BL , Repressor Proteins , Ribonucleases
SELECTION OF CITATIONS
SEARCH DETAIL
...