Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Immunol ; 9(95): eadn0126, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728413

ABSTRACT

MR1T cells are a recently found class of T cells that recognize antigens presented by the major histocompatibility complex-I-related molecule MR1 in the absence of microbial infection. The nature of the self-antigens that stimulate MR1T cells remains unclear, hampering our understanding of their physiological role and therapeutic potential. By combining genetic, pharmacological, and biochemical approaches, we found that carbonyl stress and changes in nucleobase metabolism in target cells promote MR1T cell activation. Stimulatory compounds formed by carbonyl adducts of nucleobases were detected within MR1 molecules produced by tumor cells, and their abundance and antigenicity were enhanced by drugs that induce carbonyl accumulation. Our data reveal carbonyl-nucleobase adducts as MR1T cell antigens. Recognizing cells under carbonyl stress allows MR1T cells to monitor cellular metabolic changes with physiological and therapeutic implications.


Subject(s)
Histocompatibility Antigens Class I , Minor Histocompatibility Antigens , Animals , Humans , Mice , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Lymphocyte Activation/immunology , Minor Histocompatibility Antigens/metabolism , Minor Histocompatibility Antigens/immunology , T-Lymphocytes/immunology
2.
J Exp Med ; 220(9)2023 09 04.
Article in English | MEDLINE | ID: mdl-37382893

ABSTRACT

Mucosal-associated invariant T (MAIT) cells use canonical semi-invariant T cell receptors (TCR) to recognize microbial riboflavin precursors displayed by the antigen-presenting molecule MR1. The extent of MAIT TCR crossreactivity toward physiological, microbially unrelated antigens remains underexplored. We describe MAIT TCRs endowed with MR1-dependent reactivity to tumor and healthy cells in the absence of microbial metabolites. MAIT cells bearing TCRs crossreactive toward self are rare but commonly found within healthy donors and display T-helper-like functions in vitro. Experiments with MR1-tetramers loaded with distinct ligands revealed significant crossreactivity among MAIT TCRs both ex vivo and upon in vitro expansion. A canonical MAIT TCR was selected on the basis of extremely promiscuous MR1 recognition. Structural and molecular dynamic analyses associated promiscuity to unique TCRß-chain features that were enriched within self-reactive MAIT cells of healthy individuals. Thus, self-reactive recognition of MR1 represents a functionally relevant indication of MAIT TCR crossreactivity, suggesting a potentially broader role of MAIT cells in immune homeostasis and diseases, beyond microbial immunosurveillance.


Subject(s)
Mucosal-Associated Invariant T Cells , Humans , Cell Membrane , Cell Communication , Cross Reactions , DNA Repair , Histocompatibility Antigens Class I , Minor Histocompatibility Antigens
3.
EMBO Rep ; 23(7): e53956, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35548920

ABSTRACT

To investigate the class-dependent properties of anti-viral IgM antibodies, we use membrane antigen capture activated cell sorting to isolate spike-protein-specific B cells from donors recently infected with SARS-CoV-2, allowing production of recombinant antibodies. We isolate 20, spike-protein-specific antibodies of classes IgM, IgG, and IgA, none of which shows any antigen-independent binding to human cells. Two antibodies of class IgM mediate virus neutralization at picomolar concentrations, but this potency is lost following artificial switch to IgG. Although, as expected, the IgG versions of the antibodies appear to have lower avidity than their IgM parents, this is not sufficient to explain the loss of potency.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal , Antibodies, Viral , Humans , Immunoglobulin G , Immunoglobulin M
4.
ACS Synth Biol ; 6(4): 638-647, 2017 04 21.
Article in English | MEDLINE | ID: mdl-28100049

ABSTRACT

Although RNA synthesis can be reliably controlled with different T7 transcriptional promoters during cell-free gene expression with the PURE system, protein synthesis remains largely unaffected. To better control protein levels, we investigated a series of ribosome binding sites (RBSs). Although RBS strength did strongly affect protein synthesis, the RBS sequence could explain less than half of the variability of the data. Protein expression was found to depend on other factors besides the strength of the RBS, including the GC content of the coding sequence. The complexity of protein synthesis in comparison to RNA synthesis was observed by the higher degree of variability associated with protein expression. This variability was also observed in an E. coli cell extract-based system. However, the coefficient of variation was larger with E. coli RNA polymerase than with T7 RNA polymerase, consistent with the increased complexity of E. coli RNA polymerase.


Subject(s)
Cell-Free System/metabolism , RNA/metabolism , Transcription, Genetic , 3' Untranslated Regions , 5' Untranslated Regions , Binding Sites , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Photobleaching , Protein Biosynthesis , Proteins/metabolism , RNA/chemistry , RNA Folding , Ribosomes/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Red Fluorescent Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...