Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Aquat Toxicol ; 60(1-2): 111-21, 2002 Oct 02.
Article in English | MEDLINE | ID: mdl-12204591

ABSTRACT

The depuration kinetics of the domoic acid of four body fractions (digestive gland, adductor muscle, gonad+kidney and gills+mantle) of the scallop Pecten maximus was studied over 295 days. The scallops, which had acquired the toxins during a Pseudo-nitzschia australis episode that took place the week before the beginning of the experiment, were maintained in tanks with running seawater. All the body fractions, except the adductor muscle, decreased their domoic acid burden throughout the experiment. The amount of toxin in the muscle dropped sharply at the start of the experiment but increased again at the end, to levels that were higher than the initial ones. Several dynamic models of depuration kinetics, which included the depuration of each fraction (excluding the adductor muscle) and the transfers between them, were constructed, implemented and fitted to the data to obtain their parameters. The estimated depuration rates were very low, both considering and not considering the transfer of toxin between organs or the effect of weight loss. There were strong differences in the domoic acid burden of the body fractions studied but not between their depuration rates. No net transfer from the digestive gland, the tissue with highest domoic acid concentration, to the other fractions was found, as the inclusion of these processes in the models produced only a marginally better fit to the data. The depuration of domoic acid was slightly, but significantly, affected by biomass. Weight loss induced domoic acid loss, suggesting that part of the depuration may be produced by the direct loss of bivalve cells. The concentration or dilution effect, due to decreases or increases in biomass, documented for other species and toxins, has little importance in Pecten maximus.


Subject(s)
Kainic Acid/analogs & derivatives , Kainic Acid/pharmacokinetics , Mollusca , Neuromuscular Depolarizing Agents/pharmacokinetics , Animals , Biomass , Body Weight , Environmental Exposure , Kainic Acid/metabolism , Kinetics , Neuromuscular Depolarizing Agents/metabolism , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...