Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
3.
Biomed Res Int ; 2015: 854078, 2015.
Article in English | MEDLINE | ID: mdl-26106617

ABSTRACT

The aim of this study was to compare the results obtained for identification by MALDI-TOF of nontuberculous mycobacteria (NTM) isolated in clinical samples with those obtained by GenoType Mycobacterium CM/AS (common mycobacteria/additional species). A total of 66 Mycobacterium isolates from various clinical specimens (mainly respiratory) were tested in this study. They were identified using MALDI-TOF Bruker from strains isolated in Lowenstein, following the recommended protocol of heat inactivation and extraction, and were simultaneously analyzed through hybridization by GenoType Mycobacterium from liquid culture MGIT. Our results showed that identification by MALDI-TOF was correct in 98.4% (65/66) of NTM isolated in our clinical practice (M. avium, M. intracellulare, M. abscessus, M. chelonae, M. fortuitum, M. mucogenicum, M. kansasii, and M. scrofulaceum). MALDI-TOF was found to be an accurate, rapid, and cost-effective system for identification of mycobacteria species.


Subject(s)
Mycobacterium Infections, Nontuberculous/genetics , Nontuberculous Mycobacteria/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Genotype , Humans , Mycobacterium Infections, Nontuberculous/diagnosis , Mycobacterium Infections, Nontuberculous/microbiology , Nontuberculous Mycobacteria/classification , Nontuberculous Mycobacteria/isolation & purification , Nontuberculous Mycobacteria/pathogenicity
4.
J Clin Microbiol ; 51(1): 77-82, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23100355

ABSTRACT

We present the first evaluation of a novel molecular assay, the Speed-oligo Direct Mycobacterium tuberculosis (SO-DMT) assay, which is based on PCR combined with a dipstick for the detection of mycobacteria and the specific identification of M. tuberculosis complex (MTC) in respiratory specimens. A blind evaluation was carried out in two stages: first, under experimental conditions on convenience samples comprising 20 negative specimens, 44 smear- and culture-positive respiratory specimens, and 11 sputa inoculated with various mycobacterium-related organisms; and second, in the routine workflow of 566 fresh respiratory specimens (4.9% acid-fast bacillus [AFB] smear positives, 7.6% MTC positives, and 1.8% nontuberculous mycobacteria [NTM] culture positives) from two Mycobacterium laboratories. SO-DMT assay showed no reactivity in any of the mycobacterium-free specimens or in those with mycobacterium-related organisms. Compared to culture, the sensitivity in the selected smear-positive specimens was 0.91 (0.92 for MTC and 0.90 for NTM), and there was no molecular detection of NTM in a tuberculosis case or vice versa. With respect to culture and clinical data, the sensitivity, specificity, and positive and negative predictive values for the SO-DMT system in routine specimens were 0.76 (0.93 in smear positives [1.0 for MTC and 0.5 for NTM] and 0.56 in smear negatives [0.68 for MTC and 0.16 for NTM]), 0.99, 0.85 (1.00 in smear positives and 0.68 in smear negatives), and 0.97, respectively. Molecular misidentification of NTM cases occurred when testing 2 gastric aspirates from two children with clinically but not microbiologically confirmed lung tuberculosis. The SO-DMT assay appears to be a fast and easy alternative for detecting mycobacteria and differentiating MTC from NTM in smear-positive respiratory specimens.


Subject(s)
Bacteriological Techniques/methods , Molecular Diagnostic Techniques/methods , Mycobacterium tuberculosis/isolation & purification , Sputum/microbiology , Tuberculosis, Pulmonary/diagnosis , Humans , Mycobacterium tuberculosis/genetics , Oligonucleotides , Sensitivity and Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...