Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 47(9): 3093-102, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23566330

ABSTRACT

Rapid sand filtration (RSF), proceeded by chemical coagulation and flocculation, is a commonly used, effective pretreatment in the desalination industry. We designed and tested a novel, large pilot-scale, two-stage granular Rapid Bioflocculation Filter (RBF) based on a first-stage Bioflocculator (BF) unit followed by a mixed-media bed filter (MBF). The BF filter bed consisted of an extremely porous volcanic Tuff granular medium which provided an enlarged surface area for microbial development and biofilm proliferation. We compared the efficiency of the pilot RBF to that of a full-scale RSF, operating with upstream chemical coagulation, by measuring the removal from the same untreated seawater feed of key factors related to membrane clogging: SDI, turbidity, chlorophyll a (Chl a) and transparent exopolymer particles (TEP). After 2 weeks of operation, the Tuff grains were colonized extensively by coccoid bacteria that formed biofilm along the entire BF. With bacterial colonization and biofilm development, numerous aggregates of bacteria and some algal cells embedded in an amorphous organic matrix were formed on and within the Tuff grains. By 1-3 months, the biotic diversity within the Tuff filter bed had increased to include filamentous bacteria, cyanobacteria, fungi, protista and even crustaceans and marine worms. During and for ≈ 24 h after each cleaning cycle (carried out every 5 to 7 days by upward flushing with air and water), large numbers of floc-like particles, from ≈ 15 µm to ≈ 2 mm in size were observed in the filtrate of the BF unit. Microscopic examination of these flocs (stained with Alcian Blue and SYTO(R) 9) showed that they were aggregates of many smaller particles with associated bacteria and algae within a polysaccharide gel-like matrix. These biogenic flocs (bioflocs) were observed to form during normal operation of the RBF, accumulating as aggregates of inorganic and organic material on the Tuff surfaces. With each flush cleaning cycle, these bioflocs were released into the BF effluent but were retained by the second phase MBF unit. No flocs were seen in the MBF filtrate. Over a year-long study, both the pilot RBF and the full-scale RSF showed similar filtration efficiencies, measured as the percentage removal of Chl a, TEP, turbidity and SDI from the same seawater feed. These results indicate the potential of the bioflocculation approach with no chemical additives as an alternative to conventional RSF pretreatment for large SWRO facilities.


Subject(s)
Salinity , Water Purification/methods , Bacteria/growth & development , Bacteria/ultrastructure , Filtration/instrumentation , Flocculation , Metagenome , Microscopy, Electron, Scanning , Particle Size , Pilot Projects , Porosity , Silicon Dioxide , Time Factors , Water Purification/instrumentation , Water Quality
2.
Microbiologyopen ; 1(2): 214-24, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22950026

ABSTRACT

Despite the importance of incubation assays for studies in microbial ecology that frequently require long confinement times, few reports are available in which changes in the assemblage structure of aquatic prokaryotes were monitored during long-term incubations. We measured rates of dissolved organic carbon degradation and microbial respiration by consumption of dissolved oxygen (DO) in four experiments with Lake Kinneret near-surface water and, concomitantly, we analyzed the variability in prokaryotic community structure during long-term dark bottle incubations. During the first 24 h, there were only minor changes in bacterial community composition. Thereafter there were marked changes in the prokaryotic community structure during the incubations. In contrast, oxygen consumption rates (a proxy for both respiration and dissolved organic carbon degradation rates) remained stable for up to 10-23 days. This study is one of the first to examine closely the phylo-genetic changes that occur in the microbial community of untreated freshwater during long-term (days) incubations in dark, sealed containers. Novel information on the diversity of the main bacterial phylotypes that may be involved in dissolved organic matter degradation in lake Kinneret is also provided. Our results suggest that, under certain ecological settings, constant community metabolic rates can be maintained as a result of shifts in community composition.

3.
Proc Natl Acad Sci U S A ; 109(23): 9119-24, 2012 Jun 05.
Article in English | MEDLINE | ID: mdl-22615362

ABSTRACT

Transparent exopolymer particles (TEPs) are planktonic, organic microgels that are ubiquitous in aqueous environments. Increasing evidence indicates that TEPs play an active role in the process of aquatic biofilm formation. Frequently, TEPs are intensely colonized by bacteria and other microorganisms, thus serving as hot spots of intense microbial activity. We introduce the term "protobiofilm" to refer to TEPs with extensive microbial outgrowth and colonization. Such particles display most of the characteristics of developing biofilm, with the exception of being attached to a surface. In this study, coastal seawater was passed through custom-designed flow cells that enabled direct observation of TEPs and protobiofilm in the feedwater stream by bright-field and epifluorescence microscopy. Additionally, we could follow biofilm development on immersed surfaces inside the flow cells. Within minutes, we observed TEP and protobiofilm patches adhering to these surfaces. By 30 min, confocal laser-scanning microscopy (CLSM) revealed numerous patches of Con A and SYTO 9 staining structures covering the surfaces. Atomic force microscopy showed details of a thin, highly sticky, organic conditioning layer between these patches. Bright-field and epifluorescence microscopy and CLSM showed that biofilm development (observed until 24 h) was profoundly inhibited in flow cells with seawater prefiltered to remove most large TEPs and protobiofilm. We propose a revised paradigm for aquatic biofilm development that emphasizes the critical role of microgel particles such as TEPs and protobiofilm in facilitating this process. Recognition of the role of planktonic microgels in aquatic biofilm formation can have applied importance for the water industry.


Subject(s)
Biofilms/growth & development , Gels , Plankton/chemistry , Polymers/metabolism , Seawater/chemistry , Bacterial Adhesion , Microscopy, Atomic Force , Microscopy, Confocal , Microscopy, Fluorescence , Organic Chemicals , Polymers/analysis
4.
FEMS Microbiol Ecol ; 71(3): 351-63, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20041950

ABSTRACT

Semi-annual averaged values of photosynthetic carbon fixation (PCF), community respiration (CR), bacterial productivity (BP) and zooplankton carbon biomass, measured biweekly or monthly, were used to obtain long-term estimates of bacterial respiration (BR) and bacterial growth efficiency (BGE) in Lake Kinneret from 2001 through 2007. We posited that CR=BR+phytoplankton respiration (PR)+zooplankton respiration (ZR). Based on the results of independent experimental series, PR was estimated as 0.3 x gross primary production (GPP) and GPP as 1.5 x PCF. ZR was determined by multiplying zooplankton carbon biomass, measured biweekly, with published respiration rates for major zooplankton groups. From these data, we calculated BR and consequently BGE, determined as BP/(BR+BP). Over the entire study period, BR averaged 49 (+/-10)% of CR and was consistently higher during the first half of the year. Semi-annual averaged BGE ranged from 26% to 53%, mean 39 (+/-9)%. Similar values of BGE were obtained if we did not use the measured values for ZR, but estimated BR+ZR from CR-PR and then assumed that BR ranged from two to three times ZR. The approach outlined in this paper can be useful for determining BGE in aquatic systems where long-term data sets of PCF, CR and BP are available.


Subject(s)
Bacteria/growth & development , Water Microbiology , Animals , Biomass , Carbon/metabolism , Fresh Water , Photosynthesis , Phytoplankton/growth & development , Zooplankton/growth & development
5.
Appl Environ Microbiol ; 69(1): 199-211, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12513996

ABSTRACT

Even though it is widely accepted that bacterioplankton growth in lakes and marine ecosystems is determined by the trophic status of the systems, knowledge of the relationship between nutrient concentrations and growth of particular bacterial species is almost nonexistent. To address this question, we performed a series of culture experiments with water from Lake Kinneret (Israel), the eastern Mediterranean Sea, and the Gulf of Eilat (northern Red Sea). In the initial water samples, the proportion of CFU was typically <0.002% of the 4',6'-diamidino-2-phenylindole (DAPI) counts. During incubation until the early stationary phase, the proportion of CFU increased to 20% of the DAPI counts and to 2 to 15% of the DAPI counts in unenriched lake water and seawater dilution cultures, respectively. Sequencing of the 16S ribosomal DNA of colony-forming bacteria in these cultures consistently revealed an abundance of alpha-proteobacteria, but notable phylogenetic differences were found at the genus level. Marine dilution cultures were dominated by bacteria in the Roseobacter clade, while lake dilution cultures were dominated by bacteria affiliated with the genera Sphingomonas and CAULOBACTER: In nutrient (glucose, ammonium, phosphate) addition experiments the CFU comprised 20 to 83% of the newly grown cells. In these incubation experiments fast-growing gamma-proteobacteria dominated; in the marine experiments primarily different Vibrio and Alteromonas species appeared, while in the lake water experiments species of the genera Shewanella, Aeromonas, and Rheinheimera grew. These results suggest that major, but different, gamma-proteobacterial genera in both freshwater and marine environments have a preference for elevated concentrations of nutrients and easily assimilated organic carbon sources but are selectively outcompeted by alpha-proteobacteria in the presence of low nutrient concentrations.


Subject(s)
Alphaproteobacteria/growth & development , Fresh Water/microbiology , Gammaproteobacteria/growth & development , Plankton/growth & development , Seawater/microbiology , Alphaproteobacteria/classification , Alphaproteobacteria/genetics , Animals , Colony Count, Microbial , Culture Media , DNA, Ribosomal/analysis , Ecosystem , Gammaproteobacteria/classification , Gammaproteobacteria/genetics , Israel , Molecular Sequence Data , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...