Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Chemosphere ; 308(Pt 1): 136021, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35970209

ABSTRACT

Rodents are considered one of the animal pests with the greatest impact on agricultural production and public health. Anticoagulant rodenticides (ARs), used as one of the most effective ways to control rodent populations worldwide, inhibit the vitamin K 2,3-epoxide reductase (VKORC1) enzyme involved in blood coagulation. Resistances to ARs are mainly associated with mutations or single nucleotide polymorphisms (SNPs) in the vkorc1 gene. Since the information on this subject is scarce in Spain, we monitored and discovered rodent SNPs that could favour genetic resistance in its populations. For that, more than 200 samples of stools and tails from brown rat (Rattus norvegicus), black rat (Rattus rattus) and mouse (Mus musculus) were collected from 12 Spanish regions previously identified with low AR efficacy in coordination with the National Association of Environmental Sanitation Companies (ANECPLA) and the managing entities of four locations. We then sequenced their vkorc1 exon 3 corresponding genomic DNA. We identified genotypic vkorc1 variations corresponding to amino acid changes at the VKORC1 protein at the S149I - S149T and the E155K - E155Q mutations, depending on the rodent species. Computational analysis of binding predictions found out that the brown rat S149I mutation predicted a high reduction of the binding affinity of chlorophacinone and brodifacoum ARs while, the black rat S149T, E155K and E155Q mutations slightly reduced bromadiolone AR binding. These results suggest that these mutations may be one of the causes of the increased resistance to those ARs.


Subject(s)
Rodenticides , Amino Acids/genetics , Animals , Anticoagulants , Drug Resistance , Membrane Proteins/genetics , Mice , Polymorphism, Single Nucleotide , Rats , Rodentia , Rodenticides/pharmacology , Spain , Vitamin K Epoxide Reductases/genetics
2.
MethodsX ; 8: 101413, 2021.
Article in English | MEDLINE | ID: mdl-34430308

ABSTRACT

The first step of nanomaterial accumulation in the aquatic environment is the uptake of particulate material. For substances with very low water solubility, exposure via water may be of limited relevance in comparison to the dietary route. The OECD Test Guideline 305 for bioaccumulation testing in fish using dietary exposure recommends to add substances to fish food following methodologies normally used in aquaculture (e.g. with a corn or fish oil vehicle). The feasibility of using such an approach for the testing of manufactured nanomaterials (MNs), due to their unique physical characteristics and solubility, needs to be investigated. In this study an easy, cost-effective method to prepare metal oxide nanoparticle (NP) spiked feed to give the required dietary exposure concentration to fish is described. Metal oxide NP (CeO2,TiO2 and ZnO) dispersions were prepared in oil (sunflower or olive oil) and used to soak fish feed pellets. NP surface deposition and homogeneity of distribution were analysed and confirmed. Discrepancies between nominal and measured concentrations highlighted the need to measure the achieved concentration in MN-spiked feed. The present method provides stable concentrations for bioaccumulation testing of MNs in fish through the dietary route. A method for•Fish feed preparation using nanomaterial-oil suspensions.•Homogenous spiking of nanomaterials on feed.•Nanomaterials stably maintained on feed immersed in water until eaten by fish.

3.
Sci Total Environ ; 658: 416-423, 2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30579199

ABSTRACT

One of the aims of the European project LIFE-COMBASE is to build a computational tool to predict the acute toxicity for aquatic organisms of biocidal active substances and its environmental degradation products. A database was implemented compiling toxicity data for these substances in organisms of the freshwater/marine and sewage treatment plant compartments. The goal of this study is to analyze the compiled data to identify the possible hazard of these compounds for the aquatic compartments. Several official and scientific databases were consulted. Data from 196 biocidal substances and 206 environmental metabolites were collected for the taxonomic groups, including fish, invertebrates, algae and sewage treatment plant (STP) microorganisms. Substances were categorized for their toxicity in four groups, considering values of L(E)C50, according to EU Regulation (EC) No 1272/2008. >50% of the parent were located in category 1 (L(E)C50 ≤ 1 mg/L) for fish, invertebrates and algae, indicating a high toxicity for the freshwater/marine compartments. However >60% were not toxic for STP microorganisms. Metabolites were mainly less toxic than the parent compounds, but 22-36% presented the same toxicity and ~6% were more toxic. No toxicological information was found for ~50% of the metabolites for fish, invertebrates and algae, reaching the 96% for the microorganisms. In addition, information on toxicity to the STP microorganisms was only found for 40% of the parent compounds. The high percentage of toxic metabolites and the scarcity of data for these compounds indicate the need to further study their impact in the aquatic compartments.


Subject(s)
Aquatic Organisms/drug effects , Disinfectants/toxicity , Environmental Exposure/adverse effects , Water Pollutants, Chemical/toxicity , Animals , Bacteria/drug effects , Fishes , Fresh Water/analysis , Invertebrates/drug effects , Microalgae/drug effects , Seawater/analysis , Wastewater/analysis
4.
Article in English | MEDLINE | ID: mdl-30538673

ABSTRACT

The Gh/Prl/Sl family has evolved differentially through evolution, resulting in varying relationships between the somatotropic axis and growth rates within and across fish species. This is due to a wide range of endogenous and exogenous factors that make this association variable throughout season and life cycle, and the present minireview aims to better define the nutritional and environmental regulation of the endocrine growth cascade over precisely defined groups of fishes, focusing on Mediterranean farmed fishes. As a result, circulating Gh and Igf-i are revitalized as reliable growth markers, with a close association with growth rates of gilthead sea bream juveniles with deficiency signs in both macro- or micro-nutrients. This, together with other regulated responses, promotes the use of Gh and Igf-i as key performance indicators of growth, aerobic scope, and nutritional condition in gilthead sea bream. Moreover, the sirtuin-energy sensors might modulate the growth-promoting action of somatotropic axis. In this scenario, transcripts of igf-i and gh receptors mirror changes in plasma Gh and Igf-i levels, with the ghr-i/ghr-ii expression ratio mostly unaltered over season. However, this ratio is nutritionally regulated, and enriched plant-based diets or diets with specific nutrient deficiencies downregulate hepatic ghr-i, decreasing the ghr-i/ghr-ii ratio. The same trend, due to a ghr-ii increase, is found in skeletal muscle, whereas impaired growth during overwintering is related to increase in the ghr-i/ghr-ii and igf-ii/igf-i ratios in liver and skeletal muscle, respectively. Overall, expression of insulin receptors and igf receptors is less regulated, though the expression quotient is especially high in the liver and muscle of sea bream. Nutritional and environmental regulation of the full Igf binding protein 1-6 repertoire remains to be understood. However, tissue-specific expression profiling highlights an enhanced and nutritionally regulated expression of the igfbp-1/-2/-4 clade in liver, whereas the igfbp-3/-5/-6 clade is overexpressed and regulated in skeletal muscle. The somatotropic axis is, therefore, highly informative of a wide-range of growth-disturbing and stressful stimuli, and multivariate analysis supports its use as a reliable toolset for the assessment of growth potentiality and nutrient deficiencies and requirements, especially in combination with selected panels of other nutritionally regulated metabolic biomarkers.

5.
Front Zool ; 14: 34, 2017.
Article in English | MEDLINE | ID: mdl-28694839

ABSTRACT

BACKGROUND: Acclimation to abiotic challenges, including decreases in O2 availability, requires physiological and anatomical phenotyping to accommodate the organism to the environmental conditions. The retention of a nucleus and functional mitochondria in mature fish red blood cells makes blood a promising tissue to analyse the transcriptome and metabolic responses of hypoxia-challenged fish in an integrative and non-invasive manner. METHODS: Juvenile gilthead sea bream (Sparus aurata) were reared at 20-21 °C under normoxic conditions (> 85% O2 saturation) followed by exposure to a gradual decrease in water O2 concentration to 3.0 ppm (41-42% O2 saturation) for 24 h or 1.3 ppm (18-19% O2 saturation) for up to 4 h. Blood samples were collected at three different sampling points for haematological, biochemical and transcriptomic analysis. RESULTS: Blood physiological hallmarks remained almost unaltered at 3.0 ppm, but the haematocrit and circulating levels of haemoglobin, glucose and lactate were consistently increased when fish were maintained below the limiting oxygen saturation at 1.3 ppm. These findings were concurrent with an increase in total plasma antioxidant activity and plasma cortisol levels, whereas the opposite trend was observed for growth-promoting factors, such as insulin-like growth factor I. Additionally, gene expression profiling of whole blood cells revealed changes in upstream master regulators of mitochondria (pgcß and nrf1), antioxidant enzymes (gpx1, gst3, and sod2), outer and inner membrane translocases (tom70, tom22, tim44, tim10, and tim9), components of the mitochondrial dynamics system (mfn2, miffb, miro1a, and miro2), apoptotic factors (aifm1), uncoupling proteins (ucp2) and oxidative enzymes of fatty acid ß-oxidation (acca2, ech, and hadh), the tricarboxylic acid cycle (cs) and the oxidative phosphorylation pathway. The overall response is an extensive reduction in gene expression of almost all respiratory chain enzyme subunits of the five complexes, although mitochondrial-encoded catalytic subunits and nuclear-encoded regulatory subunits of Complex IV were primarily increased in hypoxic fish. CONCLUSIONS: Our results demonstrate the re-adjustment of mitochondrial machinery at transcriptional level to cope with a decreased basal metabolic rate, consistent with a low risk of oxidative stress, diminished aerobic ATP production and higher O2-carrying capacity. Taken together, these results suggest that whole blood cells can be used as a highly informative target tissue of metabolic condition.

6.
Ecotoxicol Environ Saf ; 142: 129-138, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28395205

ABSTRACT

EROD and BFCOD activities were measured in liver and gills of barbel (Barbus callensis, a native North African species) captured at Beni Haroun lake, the most important water reservoir in Algeria. This lake receives wastewater from different origins. Thus, we assessed the level of pollution through the induction of detoxification activities in tissues of barbel, evaluating simultaneously the suitability of this species to be used as a sentinel. Fish were collected between March 2015 and January 2016 at three locations taking into account the pollution sources and accessibility. In liver, EROD and BFCOD showed the highest induction in October specially in the location of the dam that received pollutants. In gills, only EROD, but not BFCOD, activity was detected. Maximal EROD induction was noted in samples from January. Fish cell lines (RTG-2 and PLHC-1) were exposed to sediments extracts collected at Beni Haroun lake and enzyme activities (EROD and BFCOD, respectively) were measured. Sediment extracts did not induce BFCOD activity. The EROD induction observed in RTG-2 cells was in line with the results observed in fish tissues. Our results suggest that the lake is at risk from pollution and that Barbus callensis is a good sentinel species.


Subject(s)
Cyprinidae/metabolism , Cytochrome P-450 CYP1A1/metabolism , Gills/drug effects , Lakes/chemistry , Liver/drug effects , Water Pollutants, Chemical/analysis , Algeria , Animals , Cell Line , Environmental Monitoring , Gills/enzymology , Gills/metabolism , Liver/enzymology , Liver/metabolism , Seasons , Water Pollutants, Chemical/toxicity
7.
Ecotoxicol Environ Saf ; 138: 309-319, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28062079

ABSTRACT

Titanium dioxide nanoparticles (TiO2-NPs) have a wide number of applications in cosmetic, solar and paint industries due to their photocatalyst and ultraviolet blocking properties. The continuous increase in the production of TiO2-NPs enhances the risk for this manufactured nanomaterial to enter water bodies through treated effluents or agricultural amendments. TiO2-NPs have shown very low toxicity in a number of aquatic organisms. However, there are no conclusive data about their deleterious effects and on their possible mechanisms of toxic action. At this level, in vitro cell culture systems are a useful tool to gain insight about processes underlying the toxicity of a wide variety of substances, including nanomaterials. Differences in the physiology of different taxa make advisable the use of cells coming from the taxon of interest, but collecting data from a variety of cellular types allows a better understanding of the studied processes. Taking all this into account, the aim of the present study was to assess the toxicity of three types of TiO2-NP, rutile hydrophobic (NM-103), rutile hydrophilic (NM-104) and rutile-anatase (NM-105), obtained from the EU Joint Research Centre (JRC) repository, using various fish cell lines (RTG-2, PLHC-1, RTH-149, RTL-W1) and rainbow trout primary hepatocytes. For comparative purposes, the effect of different dispersion protocols, end-point assays and extended exposure time was studied in a fish cell line (RTG-2) and in the rat hepatoma cell line (H4IIE). TiO2-NPs dispersions showed a variable degree of aggregation in cell culture media. Disruption of mitochondrial metabolic activity, plasma membrane integrity and lysosome function was not detected in any cell line after exposure to TiO2-NPs at any time and concentration ranges tested. These results are indicative of a low toxicity of the TiO2-NPs tested and show the usefulness of fish cells maintained in vitro as high throughput screening methods that can facilitate further testing in the framework of integrated testing strategies.


Subject(s)
Cell Membrane/drug effects , Lysosomes/drug effects , Metal Nanoparticles/toxicity , Mitochondria/drug effects , Titanium/toxicity , Animals , Carcinoma, Hepatocellular , Cell Line, Tumor , Hepatocytes , Hydrophobic and Hydrophilic Interactions , Oncorhynchus mykiss , Rats
8.
J Comp Physiol B ; 187(1): 153-163, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27431591

ABSTRACT

The seven sirtuin (SIRT) counterparts of higher vertebrates were identified and molecularly characterized in a farmed fish of the Sparidae family, order Perciformes. These proteins are NAD+-dependent deacetylases that couple protein deacetylation with the energy status of the cell via the cellular NAD+/NADH ratio with a strict conservation of the characteristic catalytic domain surrounded by divergent N- and C- terminal regions. Phylogenetic analysis showed three major clades corresponding to SIRT1-3, SIRT4-5, and SIRT6-7 that reflected the present hierarchy of vertebrates and the accepted classification of SIRTs. Transcriptional studies revealed a ubiquitous SIRT gene expression that was tissue-specific for each SIRT. This was evidenced by multivariate analyses, which established two main clusters corresponding to SIRTs with relatively high (SIRT1, 2, and 5) and low (SIRT3, 4, 6, and 7) gene expression levels. A nutritional regulation was also evidenced in 10-day fasted fish, and SIRT2-4 exhibited an overall downregulated expression. SIRT1, 5, 6, and 7 were mostly upregulated, although clustering analyses evidenced a highly regulated response that was different for each SIRT according to the different tissue metabolic capabilities. These findings supported the use of SIRTs alone or in combination with other biomarkers for the metabolic phenotyping of farmed fish and gilthead sea bream in particular.


Subject(s)
Fish Proteins/genetics , Sea Bream/genetics , Sirtuins/genetics , Animals , Fasting/physiology , Gene Expression , Phylogeny , Sea Bream/physiology
9.
PLoS One ; 10(4): e0122889, 2015.
Article in English | MEDLINE | ID: mdl-25875231

ABSTRACT

Mitochondrial oxidative phosphorylation provides over 90% of the energy produced by aerobic organisms, therefore the regulation of mitochondrial activity is a major issue for coping with the changing environment and energy needs. In fish, there is a large body of evidence of adaptive changes in enzymatic activities of the OXPHOS pathway, but less is known at the transcriptional level and the first aim of the present study was to define the molecular identity of the actively transcribed subunits of the mitochondrial respiratory chain of a livestock animal, using gilthead sea bream as a model of farmed fish with a high added value for European aquaculture. Extensive BLAST searches in our transcriptomic database (www.nutrigroup-iats.org/seabreamdb) yielded 97 new sequences with a high coverage of catalytic, regulatory and assembly factors of Complex I to V. This was the basis for the development of a PCR array for the simultaneous profiling of 88 selected genes. This new genomic resource allowed the differential gene expression of liver and muscle tissues in a model of 10 fasting days. A consistent down-regulated response involving 72 genes was made by the liver, whereas an up-regulated response with 29 and 10 differentially expressed genes was found in white skeletal muscle and heart, respectively. This differential regulation was mostly mediated by nuclear-encoded genes (skeletal muscle) or both mitochondrial- and nuclear-encoded genes (liver, heart), which is indicative of a complex and differential regulation of mitochondrial and nuclear genomes, according to the changes in the lipogenic activity of liver and the oxidative capacity of glycolytic and highly oxidative muscle tissues. These insights contribute to the identification of the most responsive elements of OXPHOS in each tissue, which is of relevance for the appropriate gene targeting of nutritional and/or environmental metabolic disturbances in livestock animals.


Subject(s)
Gene Expression Profiling/methods , Liver/metabolism , Muscles/metabolism , Oxidative Phosphorylation , Sea Bream/genetics , Sea Bream/metabolism , Animal Nutritional Physiological Phenomena , Animals , Aquaculture , Blotting, Western , Electron Transport Chain Complex Proteins/genetics , Electron Transport Chain Complex Proteins/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction
10.
Gen Comp Endocrinol ; 205: 305-15, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24792819

ABSTRACT

The aim of the current study was to phenotype fish metabolism and the transcriptionally-mediated response of hepatic mitochondria of gilthead sea bream to intermittent and repetitive environmental stressors: (i) changes in water temperature (T-ST), (ii) changes in water level and chasing (C-ST) and (iii) multiple sensory perception stressors (M-ST). Gene expression profiling was done using a quantitative PCR array of 60 mitochondria-related genes, selected as markers of transcriptional regulation, oxidative metabolism, respiration uncoupling, antioxidant defense, protein import/folding/assembly, and mitochondrial dynamics and apoptosis. The mitochondrial phenotype mirrored changes in fish performance, haematology and lactate production. T-ST especially up-regulated transcriptional factors (PGC1α, NRF1, NRF2), rate limiting enzymes of fatty acid ß-oxidation (CPT1A) and tricarboxylic acid cycle (CS), membrane translocases (Tim/TOM complex) and molecular chaperones (mtHsp10, mtHsp60, mtHsp70) to improve the oxidative capacity in a milieu of a reduced feed intake and impaired haematology. The lack of mitochondrial response, increased production of lactate and negligible effects on growth performance in C-ST fish were mostly considered as a switch from aerobic to anaerobic metabolism. A strong down-regulation of PGC1α, NRF1, NRF2, CPT1A, CS and markers of mitochondrial dynamics and apoptosis (BAX, BCLX, MFN2, MIRO2) occurred in M-ST fish in association with the greatest circulating cortisol concentration and a reduced lactate production and feed efficiency, which represents a metabolic condition with the highest allostatic load score. These findings evidence a high mitochondrial plasticity against stress stimuli, providing new insights to define the threshold level of stress condition in fish.


Subject(s)
Environment , Mitochondria/genetics , Mitochondria/metabolism , Sea Bream/genetics , Sea Bream/metabolism , Stress, Physiological , Transcription, Genetic , Animals , Gene Expression Profiling , Gene Expression Regulation , Metabolomics , Phenotype , Sea Bream/blood , Sensation/physiology
11.
Fish Physiol Biochem ; 40(3): 751-62, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24154671

ABSTRACT

The aim of this study was to assess in an integrative manner the physiological regulation of uncoupling protein 2 (UCP2) in gilthead sea bream. A contig of 1,325 nucleotides in length with an open reading frame of 307 amino acids was recognized as UCP2 after searches in our transcriptome reference database ( http://www.nutrigroup-iats.org/seabreamdb ). Gene expression mapping by quantitative real-time PCR revealed a ubiquitous profile that clearly differs from that of UCP1 and UCP3 variants with the greatest abundance in liver and white skeletal muscle, respectively. The greatest abundance of UCP2 transcripts was found in the heart, with a relatively high expression level in blood cells, where UCP1 and UCP3 transcripts were practically undetectable. Functional studies revealed that UCP2 mRNA expression remains either unaltered or up-regulated upon feed restriction in glycolytic (white skeletal muscle) and highly oxidative muscle tissues (heart and red skeletal muscle), respectively. In contrast, exposure to hypoxic conditions (18-19% oxygen saturation) markedly down-regulated the UCP2 mRNA expression in blood cells in a cellular environment with increased haematocrit, blood haemoglobin content, and circulating levels of glucose and lactate, and total plasma antioxidant activity. These findings demonstrated that UCP2 expression is highly regulated at the transcriptional level, arising this UCP variant as an important piece of the complex trade-off between metabolic and redox sensors. This feature would avoid the activation of futile cycles of energy wastage if changes in tissue oxidative and antioxidant metabolic capabilities are able to maintain the production of reactive oxygen species at a low regulated level.


Subject(s)
Fish Proteins/blood , Gene Expression Regulation , Hypoxia/metabolism , Ion Channels/blood , Mitochondrial Proteins/blood , Sea Bream/metabolism , Amino Acid Sequence , Animals , Fish Proteins/genetics , Ion Channels/genetics , Mitochondrial Proteins/genetics , Molecular Sequence Data , Muscle, Skeletal/metabolism , Myocardium/metabolism , Nutritional Status , Sea Bream/genetics , Uncoupling Protein 2
12.
Article in English | MEDLINE | ID: mdl-23466468

ABSTRACT

Juveniles of gilthead sea bream were fed with plant protein-based diets with fish oil (FO diet) or vegetable oils (66VO diet) as dietary lipid sources. No differences in growth performance were found between both groups, and fish with an average body mass of 65-70 g were crowded (90-100 kg/m(3)) to assess the stress response within the 72 h after the onset of stressor. The rise in plasma cortisol and glucose levels was higher in stressed fish of group 66VO (66VO-S) than in FO group (FO-S), but the former stressed group regained more quickly the cortisol resting values of the corresponding non-stressed diet group. The cell-tissue repair response represented by derlin-1, 75 kDa glucose-regulated protein and 170 kDa glucose-regulated protein was triggered at a lower level in 66VO-S than in FO-S fish. This occurred in concert with a long-lasting up-regulation of glucocorticoid receptors, antioxidant enzymes, enzyme subunits of the mitochondrial respiratory chain, and enzymes involved in tissue fatty acid uptake and ß-oxidation. This gene expression pattern allows a metabolic phenotype that is prone to "high power" mitochondria, which would support the replacement of fish oil with vegetable oils when theoretical requirements in essential fatty acids for normal growth are met by diet.


Subject(s)
Crowding , Dietary Fats, Unsaturated/administration & dosage , Hydrocortisone/metabolism , RNA, Messenger/biosynthesis , Sea Bream/physiology , Stress, Physiological/physiology , Animals , Gene Expression Profiling , Homeostasis/physiology , Hydrocortisone/blood , Liver/metabolism , Liver/physiology , RNA, Messenger/analysis , RNA, Messenger/genetics , Sea Bream/genetics , Sea Bream/metabolism
13.
BMC Genomics ; 14: 178, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23497320

ABSTRACT

BACKGROUND: The gilthead sea bream (Sparus aurata) is the main fish species cultured in the Mediterranean area and constitutes an interesting model of research. Nevertheless, transcriptomic and genomic data are still scarce for this highly valuable species. A transcriptome database was constructed by de novo assembly of gilthead sea bream sequences derived from public repositories of mRNA and collections of expressed sequence tags together with new high-quality reads from five cDNA 454 normalized libraries of skeletal muscle (1), intestine (1), head kidney (2) and blood (1). RESULTS: Sequencing of the new 454 normalized libraries produced 2,945,914 high-quality reads and the de novo global assembly yielded 125,263 unique sequences with an average length of 727 nt. Blast analysis directed to protein and nucleotide databases annotated 63,880 sequences encoding for 21,384 gene descriptions, that were curated for redundancies and frameshifting at the homopolymer regions of open reading frames, and hosted at http://www.nutrigroup-iats.org/seabreamdb. Among the annotated gene descriptions, 16,177 were mapped in the Ingenuity Pathway Analysis (IPA) database, and 10,899 were eligible for functional analysis with a representation in 341 out of 372 IPA canonical pathways. The high representation of randomly selected stickleback transcripts by Blast search in the nucleotide gilthead sea bream database evidenced its high coverage of protein-coding transcripts. CONCLUSIONS: The newly assembled gilthead sea bream transcriptome represents a progress in genomic resources for this species, as it probably contains more than 75% of actively transcribed genes, constituting a valuable tool to assist studies on functional genomics and future genome projects.


Subject(s)
Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Open Reading Frames/genetics , Sea Bream/genetics , Animals , DNA, Complementary/genetics , Databases, Protein , Genome , Molecular Sequence Annotation , RNA/genetics
14.
Fish Shellfish Immunol ; 31(2): 294-302, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21640832

ABSTRACT

The aim of this work was to underline the physiological role of the antioxidant peroxiredoxin (PRDX) family in gilthead sea bream (Sparus aurata L.), a perciform fish extensively cultured in the Mediterranean area. First, extensive BLAST searches were done on the gilthead sea bream cDNA database of the AQUAMAX European Project (www.sigenae.org/iats), and six contigs were unequivocally identified as PRDX1-6 after sequence completion by RT-PCR. The phylogenetic analysis evidenced three major clades corresponding to PRDX1-4 (true 2-Cyst PRDX subclass), PRDX5 (atypical 2-Cys PRDX subclass) and PRDX6 (1-Cys PRDX subclass) that reflected the present hierarchy of vertebrates. However, the PRDX2 branch of modern fish including gilthead sea bream was related to the monophyletic PRDX1 node rather than to PRDX2 cluster of mammals and primitive fish, which probably denotes the acquisition of novel functions through vertebrate evolution. Transcriptional studies by means of quantitative real-time PCR evidenced a ubiquitous PRDX gene expression that was tissue specific for each PRDX isoform. In a second set of transcriptional studies, liver and head kidney were chosen as target tissues in fish challenged with i) the intestinal parasite Enteromyxum leei, ii) a plant oil (VO) diet with deficiencies in essential fatty acids and iii) prolonged exposure to high-rearing densities. These studies showed that PRDX genes were highly and mostly constitutively expressed in the liver and were not affected by dietary intervention or high density. In contrast, head kidney was highly sensitive to the different experimental challenges: significantly lower values were found for PRDX5 in the three trials, for PRDX6 in parasitized and high density fish and for PRDX1 in parasitized and VO fish. PRDX2, 3 and 5 were decreased only in VO, high density and parasitized animals, respectively. These findings would highlight the role of PRDXs as integrative and highly predictive biomarkers of health and welfare in fish and gilthead sea bream in particular.


Subject(s)
Fish Proteins/genetics , Peroxiredoxins/genetics , Sea Bream/genetics , Stress, Physiological , Amino Acid Sequence , Animals , DNA, Complementary , Diet , Fish Diseases/immunology , Fish Diseases/parasitology , Fish Proteins/immunology , Fish Proteins/metabolism , Gene Expression Profiling , Intestinal Diseases, Parasitic/immunology , Intestinal Diseases, Parasitic/parasitology , Intestinal Diseases, Parasitic/veterinary , Molecular Sequence Data , Myxozoa , Peroxiredoxins/immunology , Peroxiredoxins/physiology , Polymerase Chain Reaction , Population Density , Sea Bream/immunology , Sea Bream/parasitology , Sea Bream/physiology
15.
Comp Biochem Physiol A Mol Integr Physiol ; 159(3): 296-302, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21463702

ABSTRACT

The physiological regulation of the mitochondrial uncoupling protein 3 (UCP3) remains practically unexplored in fish and the aim of this study was to examine the effects of ration size on the regulation of UCP3 in heart, red skeletal muscle and white skeletal muscle of gilthead sea bream (Sparus aurata L.). Juvenile fish were fed at three different levels for 11 weeks: i) full ration until visual satiety (R(100) group), ii) 70% of satiation (R(70) group) and iii) 70% of satiation with two finishing weeks at the maintenance ration (20% of the satiation level) (R(70-20) group). The thirty percent feed restriction improved fish performance, increasing feed conversion efficiency and circulating levels of insulin-like growth factor-I (IGF-I). Fish of the R(70-20) group showed reduced growth and low circulating levels of IGF-I in combination with increased circulating concentrations of growth hormone and free fatty acids. Feed restriction did not alter UCP3 transcript levels in white skeletal muscle, but improved this tissue's oxidative capacity as assessed by changes in glycolytic and oxidative mitochondrial enzyme activities. In contrast, in cardiac and red skeletal muscle tissues, this dietary treatment primarily increased UCP3 mRNA expression. The respiratory control ratio of freshly isolated heart mitochondria was slightly lower in R(70-20) fish than in R(100) fish, which suggests that there was an increase in mitochondrial uncoupling concomitant with the enhanced UCP3 mRNA expression. Altogether, these findings highlight the different adaptive mechanism of glycolytic and highly oxidative muscle tissues for their rapid adjustment to varying feed intake.


Subject(s)
Energy Intake , Energy Metabolism , Gene Expression Regulation , Mitochondrial Proteins/genetics , Muscle, Skeletal/metabolism , Myocardium/metabolism , Sea Bream/metabolism , Up-Regulation , Animals , Base Sequence , DNA Primers , Oxidation-Reduction , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction
16.
J Comp Physiol B ; 180(5): 685-94, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20063001

ABSTRACT

The aim of this work is to underline the biological significance of mitochondrial uncoupling proteins (UCPs) in ectothermic fish using the gilthead sea bream (Sparus aurata L.) as an experimental model. A contig of 1,990 bp in length was recognized as a UCP1 ortholog after initial searches in the gilthead sea bream AQUAFIRST database ( http://www.sigenae.org/aquafirst ). Additional searches were performed in skeletal muscle by RT-PCR, and the amplified PCR product was recognized as UCP3 after sequence completion by 5'- and 3'RACE. UCP1 expression was mostly detected in liver, whereas UCP3 transcripts were only found in skeletal and cardiac muscle fibres (white skeletal muscle > red skeletal muscle > heart). Specific gene regulation of UCP1 (liver) and UCP3 (white skeletal muscle) was addressed in physiological models of age, seasonal growth and energy-metabolic unbalances. Both the increase in energy demand (stress confinement) and the reduction in energy supply during adaptive cold response in winter down-regulated UCP1 expression. Conversely, transcript levels of UCP3 were higher with age, seasonal fattening and dietary deficiencies in essential fatty acids leading to the increase in fatty acid flux towards the muscle. This close association between UCP1 and UCP3 with the oxidative and metabolic tissue status is perhaps directly related to the ancestral protein UCP function, and allows the use of UCPs as lipotoxicity markers in ectothermic fish.


Subject(s)
Ion Channels/genetics , Mitochondrial Proteins/genetics , Sea Bream/genetics , Amino Acid Sequence , Animals , Fish Proteins/genetics , Gene Expression , Humans , Molecular Sequence Data , Muscle, Skeletal/metabolism , Sea Bream/metabolism , Seasons , Sequence Alignment , Uncoupling Protein 1 , Uncoupling Protein 3
17.
Comp Biochem Physiol B Biochem Mol Biol ; 149(3): 428-38, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18164226

ABSTRACT

Glucose regulated protein 75 (GRP75/mortalin/mtHsp70/PBP74/HSPA9B) is a molecular chaperone that was partially cloned and sequenced in gilthead sea bream (Sparus aurata L.) using a RT-PCR and 3'RACE approach. The deduced amino acid sequence supported the early vertebrate divergence of the heat shock protein 70 family into cytoplasmic Hsp70/Hsc70 group, endoplasmic reticulum-resident group and the mitochondrial-type group of GRP75. The tissue-specific regulation of GRP75 was analyzed by real-time PCR and Western blot after acute (24 h, 120 kg/m(3)) and prolonged confinement exposure (3 weeks-trial, 45-50 kg/m(3)). In both experiments, GRP75 gene expression was not significantly altered in brain, head kidney and gills. By contrast, hepatic transcripts of GRP75 were up-regulated and the magnitude of the response was dependent on the intensity of stressor. Furthermore, similar increments in hepatic transcripts and protein levels of GRP75 were found after prolonged confinement exposure. In addition, these stressed animals exhibited a 10% reduction in feed efficiency, significantly increased glycaemia and plasma peroxidases, and their plasma transaminases and respiratory burst of circulating leucocytes were significantly decreased. This stress-mediated response may act in concert with the increased production of hepatic GRP75 to protect metabolically active tissues against oxidative damage.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , Liver/metabolism , Membrane Proteins/metabolism , Sea Bream/metabolism , Amino Acid Sequence , Animals , Base Sequence , Blotting, Western , Gene Expression Regulation , HSP70 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/genetics , Membrane Proteins/chemistry , Membrane Proteins/genetics , Molecular Sequence Data , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sea Bream/genetics , Sea Bream/growth & development , Sequence Alignment , Sequence Analysis, DNA , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...