Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 5024, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37596278

ABSTRACT

A perimetastatic capsule is a strong positive prognostic factor in liver metastases, but its origin remains unclear. Here, we systematically quantify the capsule's extent and cellular composition in 263 patients with colorectal cancer liver metastases to investigate its clinical significance and origin. We show that survival improves proportionally with increasing encapsulation and decreasing tumor-hepatocyte contact. Immunostaining reveals the gradual zonation of the capsule, transitioning from benign-like NGFRhigh stroma at the liver edge to FAPhigh stroma towards the tumor. Encapsulation correlates with decreased tumor viability and preoperative chemotherapy. In mice, chemotherapy and tumor cell ablation induce capsule formation. Our results suggest that encapsulation develops where tumor invasion into the liver plates stalls, representing a reparative process rather than tumor-induced desmoplasia. We propose a model of metastases growth, where the efficient tumor colonization of the liver parenchyma and a reparative liver injury reaction are opposing determinants of metastasis aggressiveness.


Subject(s)
Liver Neoplasms , Animals , Mice , Hepatocytes , Aggression , Clinical Relevance
2.
EBioMedicine ; 88: 104452, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36724681

ABSTRACT

BACKGROUND: Cancer immunity is based on the interaction of a multitude of cells in the spatial context of the tumour tissue. Clinically relevant immune signatures are therefore anticipated to fundamentally improve the accuracy in predicting disease progression. METHODS: Through a multiplex in situ analysis we evaluated 15 immune cell classes in 1481 tumour samples. Single-cell and bulk RNAseq data sets were used for functional analysis and validation of prognostic and predictive associations. FINDINGS: By combining the prognostic information of anti-tumoural CD8+ lymphocytes and tumour supportive CD68+CD163+ macrophages in colorectal cancer we generated a signature of immune activation (SIA). The prognostic impact of SIA was independent of conventional parameters and comparable with the state-of-art immune score. The SIA was also associated with patient survival in oesophageal adenocarcinoma, bladder cancer, lung adenocarcinoma and melanoma, but not in endometrial, ovarian and squamous cell lung carcinoma. We identified CD68+CD163+ macrophages as the major producers of complement C1q, which could serve as a surrogate marker of this macrophage subset. Consequently, the RNA-based version of SIA (ratio of CD8A to C1QA) was predictive for survival in independent RNAseq data sets from these six cancer types. Finally, the CD8A/C1QA mRNA ratio was also predictive for the response to checkpoint inhibitor therapy. INTERPRETATION: Our findings extend current concepts to procure prognostic information from the tumour immune microenvironment and provide an immune activation signature with high clinical potential in common human cancer types. FUNDING: Swedish Cancer Society, Lions Cancer Foundation, Selanders Foundation, P.O. Zetterling Foundation, U-CAN supported by SRA CancerUU, Uppsala University and Region Uppsala.


Subject(s)
Adenocarcinoma , Lung Neoplasms , Humans , Prognosis , Tumor Microenvironment , Lymphocytes, Tumor-Infiltrating/metabolism , Adenocarcinoma/pathology , Lung Neoplasms/pathology , Immunotherapy , Biomarkers, Tumor/genetics
3.
J Natl Cancer Inst ; 115(1): 71-82, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36083003

ABSTRACT

BACKGROUND: Cancer-associated fibroblasts (CAFs) are molecularly heterogeneous mesenchymal cells that interact with malignant cells and immune cells and confer anti- and protumorigenic functions. Prior in situ profiling studies of human CAFs have largely relied on scoring single markers, thus presenting a limited view of their molecular complexity. Our objective was to study the complex spatial tumor microenvironment of non-small cell lung cancer (NSCLC) with multiple CAF biomarkers, identify novel CAF subsets, and explore their associations with patient outcome. METHODS: Multiplex fluorescence immunohistochemistry was employed to spatially profile the CAF landscape in 2 population-based NSCLC cohorts (n = 636) using antibodies against 4 fibroblast markers: platelet-derived growth factor receptor-alpha (PDGFRA) and -beta (PDGFRB), fibroblast activation protein (FAP), and alpha-smooth muscle actin (αSMA). The CAF subsets were analyzed for their correlations with mutations, immune characteristics, and clinical variables as well as overall survival. RESULTS: Two CAF subsets, CAF7 (PDGFRA-/PDGFRB+/FAP+/αSMA+) and CAF13 (PDGFRA+/PDGFRB+/FAP-/αSMA+), showed statistically significant but opposite associations with tumor histology, driver mutations (tumor protein p53 [TP53] and epidermal growth factor receptor [EGFR]), immune features (programmed death-ligand 1 and CD163), and prognosis. In patients with early stage tumors (pathological tumor-node-metastasis IA-IB), CAF7 and CAF13 acted as independent prognostic factors. CONCLUSIONS: Multimarker-defined CAF subsets were identified through high-content spatial profiling. The robust associations of CAFs with driver mutations, immune features, and outcome suggest CAFs as essential factors in NSCLC progression and warrant further studies to explore their potential as biomarkers or therapeutic targets. This study also highlights multiplex fluorescence immunohistochemistry-based CAF profiling as a powerful tool for the discovery of clinically relevant CAF subsets.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Receptor, Platelet-Derived Growth Factor beta/analysis , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , Biomarkers, Tumor/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Cancer-Associated Fibroblasts/metabolism , Mutation , Tumor Microenvironment
4.
Cancers (Basel) ; 13(21)2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34771707

ABSTRACT

While the clinical importance of CD8+ and CD3+ cells in colorectal cancer (CRC) is well established, the impact of other immune cell subsets is less well described. We sought to provide a detailed overview of the immune landscape of CRC in the largest study to date in terms of patient numbers and in situ analyzed immune cell types. Tissue microarrays from 536 patients were stained using multiplexed immunofluorescence panels, and fifteen immune cell subclasses, representing adaptive and innate immunity, were analyzed. Overall, therapy-naïve CRC patients clustered into an 'inflamed' and a 'desert' group. Most T cell subsets and M2 macrophages were enriched in the right colon (p-values 0.046-0.004), while pDC cells were in the rectum (p = 0.008). Elderly patients had higher infiltration of M2 macrophages (p = 0.024). CD8+ cells were linked to improved survival in colon cancer stages I-III (q = 0.014), while CD4+ cells had the strongest impact on overall survival in metastatic CRC (q = 0.031). Finally, we demonstrated repopulation of the immune infiltrate in rectal tumors post radiation, following an initial radiation-induced depletion. This study provides a detailed analysis of the in situ immune landscape of CRC paving the way for better diagnostics and providing hints to better target the immune microenvironment.

5.
Cancers (Basel) ; 13(13)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202448

ABSTRACT

Nuclear factor erythroid 2-related factor 2 (NRF2) protein expression promotes cancer progression in non-small cell lung cancer (NSCLC). However, its role in the clinical setting has not been established. We retrospectively analyzed data from 304 patients with surgically removed NSCLC. Multiplex antibody staining of NRF2 and thioredoxin reductase 1 (TrxR1) was conducted and scored in cytokeratin-positive (CK+) cells within the whole-tissue core as well as the tumor and stromal compartments of each tissue microarray (TMA) core. A high density of NRF2+/CK+ cells in the whole-tissue core compartment was correlated with a higher risk of central nervous system (CNS) relapse OR = 7.36 (95% CI: 1.64-33.06). The multivariate analysis showed an OR = 8.00 (95% CI: 1.70-37.60) for CNS relapse in NRF2+/CK+ high-density cases. The density of TrxR1+/CK+ cells failed to show any statistically significant risk of relapse. The OS analyses for NRF2+/CK+ and TrxR1+/CK+ cell density failed to show any statistical significance. This is the first study to report a correlation between NRF2+/CK+ cell density and the risk of CNS relapse in early-stage NSCLC. The results of our study may impact the follow-up strategy for early-stage NSCLC patients and eventually improve their prognosis.

6.
Int J Mol Sci ; 22(7)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33806075

ABSTRACT

Growing evidence is showing that acetylation plays an essential role in cancer, but studies on the impact of KDAC inhibition (KDACi) on the metabolic profile are still in their infancy. Here, we analyzed, by using an iTRAQ-based quantitative proteomics approach, the changes in the proteome of KRAS-mutated non-small cell lung cancer (NSCLC) A549 cells in response to trichostatin-A (TSA) and nicotinamide (NAM) under normoxia and hypoxia. Part of this response was further validated by molecular and biochemical analyses and correlated with the proliferation rates, apoptotic cell death, and activation of ROS scavenging mechanisms in opposition to the ROS production. Despite the differences among the KDAC inhibitors, up-regulation of glycolysis, TCA cycle, oxidative phosphorylation and fatty acid synthesis emerged as a common metabolic response underlying KDACi. We also observed that some of the KDACi effects at metabolic levels are enhanced under hypoxia. Furthermore, we used a drug repositioning machine learning approach to list candidate metabolic therapeutic agents for KRAS mutated NSCLC. Together, these results allow us to better understand the metabolic regulations underlying KDACi in NSCLC, taking into account the microenvironment of tumors related to hypoxia, and bring new insights for the future rational design of new therapies.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Cell Hypoxia , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Lung Neoplasms/metabolism , Oxygen/chemistry , A549 Cells , Apoptosis , Humans , Lysine/chemistry , Machine Learning , Metabolic Networks and Pathways , Oxidative Phosphorylation , Proteome/metabolism , Proteomics/methods , Proto-Oncogene Proteins p21(ras)/metabolism , Reactive Oxygen Species/metabolism
7.
EBioMedicine ; 65: 103269, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33706249

ABSTRACT

BACKGROUND: The development of a reactive tumour stroma is a hallmark of tumour progression and pronounced tumour stroma is generally considered to be associated with clinical aggressiveness. The variability between tumour types regarding stroma fraction, and its prognosis associations, have not been systematically analysed. METHODS: Using an objective machine-learning method we quantified the tumour stroma in 16 solid cancer types from 2732 patients, representing retrospective tissue collections of surgically resected primary tumours. Image analysis performed tissue segmentation into stromal and epithelial compartment based on pan-cytokeratin staining and autofluorescence patterns. FINDINGS: The stroma fraction was highly variable within and across the tumour types, with kidney cancer showing the lowest and pancreato-biliary type periampullary cancer showing the highest stroma proportion (median 19% and 73% respectively). Adjusted Cox regression models revealed both positive (pancreato-biliary type periampullary cancer and oestrogen negative breast cancer, HR(95%CI)=0.56(0.34-0.92) and HR(95%CI)=0.41(0.17-0.98) respectively) and negative (intestinal type periampullary cancer, HR(95%CI)=3.59(1.49-8.62)) associations of the tumour stroma fraction with survival. INTERPRETATION: Our study provides an objective quantification of the tumour stroma fraction across major types of solid cancer. Findings strongly argue against the commonly promoted view of a general associations between high stroma abundance and poor prognosis. The results also suggest that full exploitation of the prognostic potential of tumour stroma requires analyses that go beyond determination of stroma abundance. FUNDING: The Swedish Cancer Society, The Lions Cancer Foundation Uppsala, The Swedish Government Grant for Clinical Research, The Mrs Berta Kamprad Foundation, Sweden, Sellanders foundation, P.O.Zetterling Foundation, and The Sjöberg Foundation, Sweden.


Subject(s)
Machine Learning , Neoplasms/pathology , Humans , Neoplasms/mortality , Prognosis , Proportional Hazards Models , Retrospective Studies , Stromal Cells/pathology , Survival Analysis
8.
J Proteome Res ; 13(11): 4695-704, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25029028

ABSTRACT

KRAS mutations in non-small cell lung cancer (NSCLC) are a predictor of resistance to EGFR-targeted therapies. Because approaches to target RAS signaling have been unsuccessful, targeting lung cancer metabolism might help to develop a new strategy that could overcome drug resistance in such cancer. In this study, we applied a large screening quantitative proteomic analysis to evidence key enzymes involved in metabolic adaptations in lung cancer. We carried out the proteomic analysis of two KRAS-mutated NSCLC cell lines (A549 and NCI-H460) and a non tumoral bronchial cell line (BEAS-2B) using an iTRAQ (isobaric tags for relative and absolute quantitation) approach combined with two-dimensional fractionation (OFFGEL/RP nanoLC) and MALDI-TOF/TOF mass spectrometry analysis. Protein targets identified by our iTRAQ approach were validated by Western blotting analysis. Among 1038 proteins identified and 834 proteins quantified, 49 and 82 proteins were respectively found differently expressed in A549 and NCI-H460 cells compared to the BEAS-2B non tumoral cell line. Regarding the metabolic pathways, enzymes involved in glycolysis (GAPDH/PKM2/LDH-A/LDH-B) and pentose phosphate pathway (PPP) (G6PD/TKT/6PGD) were up-regulated. The up-regulation of enzyme expression in PPP is correlated to their enzyme activity and will be further investigated to confirm those enzymes as promising metabolic targets for the development of new therapeutic treatments or biomarker assay for NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/physiology , Metabolic Networks and Pathways/physiology , Proteomics/methods , Proto-Oncogene Proteins/genetics , ras Proteins/genetics , Blotting, Western , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Chromatography, Liquid , Gene Expression Regulation, Neoplastic/genetics , Glycolysis/genetics , Glycolysis/physiology , High-Throughput Screening Assays , Humans , Metabolic Networks and Pathways/genetics , Pentose Phosphate Pathway/genetics , Pentose Phosphate Pathway/physiology , Proto-Oncogene Proteins p21(ras) , Tandem Mass Spectrometry
9.
Future Med Chem ; 6(16): 1791-810, 2014.
Article in English | MEDLINE | ID: mdl-25574531

ABSTRACT

Metabolic processes are altered in cancer cells, which obtain advantages from this metabolic reprogramming in terms of energy production and synthesis of biomolecules that sustain their uncontrolled proliferation. Due to the conceptual progresses in the last decade, metabolic reprogramming was recently included as one of the new hallmarks of cancer. The advent of high-throughput technologies to amass an abundance of omic data, together with the development of new computational methods that allow the integration and analysis of omic data by using genome-scale reconstructions of human metabolism, have increased and accelerated the discovery and development of anticancer drugs and tumor-specific metabolic biomarkers. Here we review and discuss the latest advances in the context of metabolic reprogramming and the future in cancer research.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Neoplasms/drug therapy , Neoplasms/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/metabolism , Computational Biology , High-Throughput Screening Assays , Humans , Neoplasms/pathology
10.
Neurochem Res ; 32(1): 73-80, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17151912

ABSTRACT

Appropriate removal of L: -glutamate from the synaptic cleft is important for prevention of the excitotoxic effects of this neurotransmitter. The Na+-dependent glutamate/aspartate transporter GLAST is regulated in the short term, by a transporter-dependent decrease in uptake activity while in the long term, a receptor's-dependent decrease in GLAST protein levels leads to a severe reduction in glutamate uptake. The promoter region of the mouse glast gene harbors an Activator Protein-1 site (AP-1). To gain insight into the molecular mechanisms triggered by Glu-receptors activation involved in GLAST regulation, we took advantage of the neonatal mouse cerebellar prisms model. We characterized the glutamate uptake activity; the glutamate-dependent effect on GLAST protein levels and over the interaction of nuclear proteins with a mouse glast promoter AP-1 probe. A time and dose dependent decrease in transporter activity matching with a decrease in GLAST levels was recorded upon glutamate treatment. Moreover, a significant increase in glast AP-1 DNA binding was found. Pharmacological experiments established that both effects are mediated through alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors, favoring the notion of the critical involvement of glutamate in the regulation of its binding partners: receptors and transporters.


Subject(s)
Excitatory Amino Acid Transporter 1/biosynthesis , Promoter Regions, Genetic , Receptors, AMPA/physiology , Transcription Factor AP-1/physiology , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Animals , Cell Survival/drug effects , Cerebellum/drug effects , Cerebellum/physiology , Down-Regulation , Excitatory Amino Acid Transporter 1/genetics , Gene Expression Regulation , Glutamic Acid/pharmacology , Mice , Mice, Inbred BALB C
11.
Neurochem Res ; 31(3): 423-9, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16733819

ABSTRACT

Glutamate is involved in gene expression regulation in neurons and glial cells through the activation of a diverse array of signaling cascades. In Bergmann glia, Ca2+ -permeable alpha-hydroxy-5-methyl-4-isoazole-propionic acid (AMPA) receptors become tyrosine phosphorylated after ligand binding and by these means form multiprotein signaling complexes. Of the various proteins that associate to these receptors, the phosphatidylinositol 3-kinase (PI-3K) deserves special attention since D3-phosphorylated phosphoinositides are docking molecules for signaling proteins with a pleckstrin homology domain. In order to characterize the role of PI-3K in AMPA receptors signaling, in the present report we analyze the involvement of the serine/threonine protein kinase B in this process. Our results demonstrate an augmentation in protein kinase B phosphorylation and activity after glutamate exposure. Interestingly, the effect is independent of Ca2+ influx, but sensitive to Src blockers. Our present findings broaden our current knowledge of glial glutamate receptors signaling and their involvement glutamatergic neurotransmission.


Subject(s)
Glutamic Acid/physiology , Neuroglia/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, AMPA/physiology , Animals , Cells, Cultured , Chick Embryo , Enzyme Activation , Glutamic Acid/pharmacology , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Neuroglia/cytology , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Signal Transduction
12.
Neurochem Res ; 28(12): 1843-9, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14649726

ABSTRACT

The regulation of the Na+-dependent glutamate/aspartate transporter system GLAST expressed in rat and mouse cerebellar and cortical astrocytic cultures was examined. Pretreatment of the cerebellar cells with L-glutamate and 12-O-tetradecanoyl-phorbol-13-acetate (TPA), a known Ca2+/diacylglicerol-dependent protein kinase (PKC) activator, produced a decrease in [3H]-D-aspartate uptake. This reduction was dose- and time-dependent and sensitive to PKC inhibitors. Furthermore, the L-glutamate-dependent [3H]-D-aspartate uptake decrease is a non-receptor dependent process, because neither of the agonists or antagonists were effective in mimicking or reverting the effect. Interestingly, transportable substrates could reproduce the L-glutamate effect. In sharp contrast, in cortical astrocytes, both L-glutamate and TPA pre-exposure result in an augmentation of the [3H]-D-aspartate uptake. These findings suggest that the Na+-dependent glutamate uptake GLAST undergoes a region-specific regulation.


Subject(s)
Amino Acid Transport System X-AG/metabolism , Astrocytes/metabolism , Cerebellum/metabolism , Sodium/metabolism , Animals , Astrocytes/drug effects , Cells, Cultured , Cerebellum/cytology , Cerebellum/drug effects , Mice , Rats , Tetradecanoylphorbol Acetate/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...