Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Inhal Toxicol ; 32(1): 14-23, 2020 01.
Article in English | MEDLINE | ID: mdl-32013640

ABSTRACT

Objective: Ethanol is used as a solvent for flavoring chemicals in some electronic cigarette (e-cigarette) liquids (e-liquids). However, there are limited data available regarding the effects of inhalation of ethanol on blood alcohol concentration (BAC) during e-cigarette use. In this study, a modified physiologically based pharmacokinetic (PBPK) model for inhalation of ethanol was used to estimate the BAC time-profile of e-cigarette users who puffed an e-liquid containing 23.5% ethanol. Materials and Methods: A modified PBPK model for inhalation of ethanol was developed. Use characteristics were estimated based on first-generation and second-generation e-cigarette topography parameters. Three representative use-case puffing profiles were modeled: a user that took many, short puffs; a typical user with intermediate puff counts and puff durations; and a user that took fewer, long puffs. Results and Discussion: The estimated peak BACs for these three user profiles were 0.22, 0.22, and 0.30 mg/L for first-generation devices, respectively, and 0.85, 0.58, and 0.34 mg/L for second-generation devices, respectively. Additionally, peak BACs for individual first-generation users with directly measured puffing parameters were estimated to range from 0.06 to 0.67 mg/L. None of the scenarios modeled predicted a peak BAC result that approached toxicological or regulatory thresholds that would be associated with physiological impairment (roughly 0.01% or 100 mg/L). Conclusions: The approach used in this study, combining a validated PBPK model for a toxicant with peer-reviewed topographical parameters, can serve as a screening-level exposure assessment useful for evaluation of the safety of e-liquid formulations. Abbreviations: BAC: blood alcohol concentration; e-cigarette: electronic cigarette; e-liquid: e-cigarette liquid or propylene glycol and/or vegetable glycerin-based liquid; HS-GC-FID: headspace gas chromatography with flame-ionization detection; HS-GC-MS: headspace gas chromatography-mass spectrometry; PBPK: physiologically based pharmacokinetic; Cair: puff concentration expressed as ppm; Cair,mass: ethanol air concentration expressed on a mass basis; Cv: ethanol concentration in the venous blood; ρ: density; EC: ethanol concentration in the liquid; PLC: liquid consumption per puff; PAV: air volume of the puff; Cair,mass: puff concentration expressed as ppm; MW: molecular weight; P: pressure; T: temperature; PK: pharmacokinetic.


Subject(s)
Electronic Nicotine Delivery Systems/standards , Ethanol/blood , Inhalation Exposure/adverse effects , Models, Biological , Vaping , Humans , Inhalation Exposure/analysis , Vaping/adverse effects , Vaping/blood
2.
BMC Pharmacol Toxicol ; 14: 9, 2013 Feb 04.
Article in English | MEDLINE | ID: mdl-23374645

ABSTRACT

BACKGROUND: Mitochondrial DNA (mtDNA) is present in multiple copies per cell and undergoes dramatic amplification during development. The impacts of mtDNA damage incurred early in development are not well understood, especially in the case of types of mtDNA damage that are irreparable, such as ultraviolet C radiation (UVC)-induced photodimers. METHODS: We exposed first larval stage nematodes to UVC using a protocol that results in accumulated mtDNA damage but permits nuclear DNA (nDNA) repair. We then measured the transcriptional response, as well as oxygen consumption, ATP levels, and mtDNA copy number through adulthood. RESULTS: Although the mtDNA damage persisted to the fourth larval stage, we observed only a relatively minor ~40% decrease in mtDNA copy number. Transcriptomic analysis suggested an inhibition of aerobic metabolism and developmental processes; mRNA levels for mtDNA-encoded genes were reduced ~50% at 3 hours post-treatment, but recovered and, in some cases, were upregulated at 24 and 48 hours post-exposure. The mtDNA polymerase γ was also induced ~8-fold at 48 hours post-exposure. Moreover, ATP levels and oxygen consumption were reduced in response to UVC exposure, with marked reductions of ~50% at the later larval stages. CONCLUSIONS: These results support the hypothesis that early life exposure to mitochondrial genotoxicants could result in mitochondrial dysfunction at later stages of life, thereby highlighting the potential health hazards of time-delayed effects of these genotoxicants in the environment.


Subject(s)
Caenorhabditis elegans/radiation effects , DNA, Mitochondrial/radiation effects , Ultraviolet Rays , Adenosine Triphosphate/metabolism , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , DNA Copy Number Variations , DNA Damage , Gene Expression Profiling , Oligonucleotide Array Sequence Analysis , Oxygen Consumption , Transcription, Genetic/radiation effects
3.
FASEB J ; 27(2): 665-71, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23118028

ABSTRACT

Humans are exposed to low-dose ionizing radiation (LDIR) from a number of environmental and medical sources. In addition to inducing genetic mutations, there is concern that LDIR may also alter the epigenome. Such heritable effects early in life can either be positively adaptive or result in the enhanced formation of diseases, including cancer, diabetes, and obesity. Herein, we show that LDIR significantly increased DNA methylation at the viable yellow agouti (A(vy)) locus in a sex-specific manner (P=0.004). Average DNA methylation was significantly increased in male offspring exposed to doses between 0.7 and 7.6 cGy, with maximum effects at 1.4 and 3.0 cGy (P<0.01). Offspring coat color was concomitantly shifted toward pseudoagouti (P<0.01). Maternal dietary antioxidant supplementation mitigated both the DNA methylation changes and coat color shift in the irradiated offspring. Thus, LDIR exposure during gestation elicits epigenetic alterations that lead to positive adaptive phenotypic changes that are negated with antioxidants, indicating they are mediated in part by oxidative stress. These findings provide evidence that in the isogenic A(vy) mouse model, epigenetic alterations resulting from LDIR play a role in radiation hormesis, bringing into question the assumption that every dose of radiation is harmful.


Subject(s)
Antioxidants/pharmacology , Epigenesis, Genetic/drug effects , Epigenesis, Genetic/radiation effects , Agouti Signaling Protein/genetics , Animals , Base Sequence , CpG Islands , DNA/genetics , DNA Methylation/drug effects , DNA Methylation/radiation effects , Dose-Response Relationship, Radiation , Environmental Exposure , Female , Hair Color/genetics , Humans , Male , Mice , Molecular Sequence Data
4.
ILAR J ; 53(3-4): 341-58, 2012.
Article in English | MEDLINE | ID: mdl-23744971

ABSTRACT

Imprinted genes form a special subset of the genome, exhibiting monoallelic expression in a parent-of-origin-dependent fashion. This monoallelic expression is controlled by parental-specific epigenetic marks, which are established in gametogenesis and early embryonic development and are persistent in all somatic cells throughout life. We define this specific set of cis-acting epigenetic regulatory elements as the imprintome, a distinct and specially tasked subset of the epigenome. Imprintome elements contain DNA methylation and histone modifications that regulate monoallelic expression by affecting promoter accessibility, chromatin structure, and chromatin configuration. Understanding their regulation is critical because a significant proportion of human imprinted genes are implicated in complex diseases. Significant species variation in the repertoire of imprinted genes and their epigenetic regulation, however, will not allow model organisms solely to be used for this crucial purpose. Ultimately, only the human will suffice to accurately define the human imprintome.


Subject(s)
Genomic Imprinting/genetics , DNA Methylation/genetics , Disease Susceptibility , Epigenesis, Genetic/genetics , Humans
5.
Birth Defects Res A Clin Mol Teratol ; 88(10): 938-44, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20568270

ABSTRACT

Through DNA methylation, histone modifications, and small regulatory RNAs the epigenome systematically controls gene expression during development, both in utero and throughout life. The epigenome is also a very reactive system; its labile nature allows it to sense and respond to environmental perturbations to ensure survival during fetal growth. This pliability can lead to aberrant epigenetic modifications that persist into later life and induce numerous disease states. Endocrine-disrupting compounds (EDCs) are ubiquitous chemicals that interfere with growth and development. Several EDCs also interfere with epigenetic programming. The investigation of the epigenotoxic effects of bisphenol A (BPA), an EDC used in the production of plastics and resins, has further raised concern over the impact of EDCs on the epigenome. Using the Agouti viable yellow (A(vy)) mouse model, dietary BPA exposure was shown to hypomethylate both the A(vy) and the Cabp(IAP) metastable epialleles. This hypomethylating effect was counteracted with dietary supplementation of methyl donors or genistein. These results are consistent with reports of BPA and other EDCs causing epigenetic effects. Epigenotoxicity could lead to numerous developmental, metabolic, and behavioral disorders in exposed populations. The heritable nature of epigenetic changes also increases the risk for transgenerational inheritance of phenotypes. Thus, epigenotoxicity must be considered when assessing these compounds for safety.


Subject(s)
Embryonic Development , Endocrine Disruptors/toxicity , Epigenesis, Genetic , Epigenomics , Phenols/toxicity , Animals , Benzhydryl Compounds , Biosensing Techniques , Female , Male , Mice , Mice, Inbred Strains , Models, Animal , Toxicogenetics
SELECTION OF CITATIONS
SEARCH DETAIL
...