Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 4798, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32968066

ABSTRACT

Myeloid cells are known mediators of hypertension, but their role in initiating renin-induced hypertension has not been studied. Vitamin D deficiency causes pro-inflammatory macrophage infiltration in metabolic tissues and is linked to renin-mediated hypertension. We tested the hypothesis that impaired vitamin D signaling in macrophages causes hypertension using conditional knockout of the myeloid vitamin D receptor in mice (KODMAC). These mice develop renin-dependent hypertension due to macrophage infiltration of the vasculature and direct activation of renal juxtaglomerular (JG) cell renin production. Induction of endoplasmic reticulum stress in knockout macrophages increases miR-106b-5p secretion, which stimulates JG cell renin production via repression of transcription factors E2f1 and Pde3b. Moreover, in wild-type recipient mice of KODMAC/miR106b-/- bone marrow, knockout of miR-106b-5p prevents the hypertension and JG cell renin production induced by KODMAC macrophages, suggesting myeloid-specific, miR-106b-5p-dependent effects. These findings confirm macrophage miR-106b-5p secretion from impaired vitamin D receptor signaling causes inflammation-induced hypertension.


Subject(s)
Hypertension, Renal/metabolism , Hypertension/metabolism , Macrophages/metabolism , MicroRNAs/metabolism , Nephritis/metabolism , Renin/metabolism , Animals , Bone Marrow , Bone Marrow Transplantation , Disease Models, Animal , E2F1 Transcription Factor/metabolism , Endoplasmic Reticulum Stress , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells , Receptors, Calcitriol , Vitamin D
2.
J Clin Invest ; 107(8): 1025-34, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11306606

ABSTRACT

PPARalpha is a ligand-dependent transcription factor expressed at high levels in the liver. Its activation by the drug gemfibrozil reduces clinical events in humans with established atherosclerosis, but the underlying mechanisms are incompletely defined. To clarify the role of PPARalpha in vascular disease, we crossed PPARalpha-null mice with apoE-null mice to determine if the genetic absence of PPARalpha affects vascular disease in a robust atherosclerosis model. On a high-fat diet, concentrations of atherogenic lipoproteins were higher in PPARalpha(-/-)apoE(-/-) than in PPARalpha(+/+)apoE(-/-) mice, due to increased VLDL production. However, en face atherosclerotic lesion areas at the aortic arch, thoracic aorta, and abdominal aorta were less in PPARalpha-null animals of both sexes after 6 and 10 weeks of high-fat feeding. Despite gaining as much or more weight than their PPARalpha(+/+)apoE(-/-) littermates, PPARalpha(-/-)apoE(-/-) mice had lower fasting levels of glucose and insulin. PPARalpha-null animals had greater suppression of endogenous glucose production in hyperinsulinemic clamp experiments, reflecting less insulin resistance in the absence of PPARalpha. PPARalpha(-/-)apoE(-/-) mice also had lower blood pressures than their PPARalpha(+/+)apoE(-/-) littermates after high-fat feeding. These results suggest that PPARalpha may participate in the pathogenesis of diet-induced insulin resistance and atherosclerosis.


Subject(s)
Apolipoproteins E/physiology , Arteriosclerosis/pathology , Insulin Resistance , Receptors, Cytoplasmic and Nuclear/physiology , Transcription Factors/physiology , Animals , Aorta/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Arteriosclerosis/metabolism , Blood Pressure , CD36 Antigens/genetics , Chemokine CCL2/genetics , Dietary Fats/metabolism , Female , Gene Expression , Glucose/metabolism , Lipoprotein Lipase/metabolism , Lipoproteins/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pyrimidines/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...