Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 12: 69, 2011 Jan 26.
Article in English | MEDLINE | ID: mdl-21269501

ABSTRACT

BACKGROUND: Sessile bivalves of the genus Mytilus are suspension feeders relatively tolerant to a wide range of environmental changes, used as sentinels in ecotoxicological investigations and marketed worldwide as seafood. Mortality events caused by infective agents and parasites apparently occur less in mussels than in other bivalves but the molecular basis of such evidence is unknown. The arrangement of Mytibase, interactive catalogue of 7,112 transcripts of M. galloprovincialis, offered us the opportunity to look for gene sequences relevant to the host defences, in particular the innate immunity related genes. RESULTS: We have explored and described the Mytibase sequence clusters and singletons having a putative role in recognition, intracellular signalling, and neutralization of potential pathogens in M. galloprovincialis. Automatically assisted searches of protein signatures and manually cured sequence analysis confirmed the molecular diversity of recognition/effector molecules such as the antimicrobial peptides and many carbohydrate binding proteins. Molecular motifs identifying complement C1q, C-type lectins and fibrinogen-like transcripts emerged as the most abundant in the Mytibase collection whereas, conversely, sequence motifs denoting the regulatory cytokine MIF and cytokine-related transcripts represent singular and unexpected findings. Using a cross-search strategy, 1,820 putatively immune-related sequences were selected to design oligonucleotide probes and define a species-specific Immunochip (DNA microarray). The Immunochip performance was tested with hemolymph RNAs from mussels injected with Vibrio splendidus at 3 and 48 hours post-treatment. A total of 143 and 262 differentially expressed genes exemplify the early and late hemocyte response of the Vibrio-challenged mussels, respectively, with AMP trends confirmed by qPCR and clear modulation of interrelated signalling pathways. CONCLUSIONS: The Mytibase collection is rich in gene transcripts modulated in response to antigenic stimuli and represents an interesting window for looking at the mussel immunome (transcriptomes mediating the mussel response to non-self or abnormal antigens). On this basis, we have defined a new microarray platform, a mussel Immunochip, as a flexible tool for the experimental validation of immune-candidate sequences, and tested its performance on Vibrio-activated mussel hemocytes. The microarray platform and related expression data can be regarded as a step forward in the study of the adaptive response of the Mytilus species to an evolving microbial world.


Subject(s)
Immunity, Innate/genetics , Mytilus/genetics , Mytilus/immunology , Amino Acid Sequence , Animals , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction , Sequence Homology, Amino Acid
2.
BMC Genomics ; 10: 72, 2009 Feb 09.
Article in English | MEDLINE | ID: mdl-19203376

ABSTRACT

BACKGROUND: Although bivalves are among the most studied marine organisms due to their ecological role, economic importance and use in pollution biomonitoring, very little information is available on the genome sequences of mussels. This study reports the functional analysis of a large-scale Expressed Sequence Tag (EST) sequencing from different tissues of Mytilus galloprovincialis (the Mediterranean mussel) challenged with toxic pollutants, temperature and potentially pathogenic bacteria. RESULTS: We have constructed and sequenced seventeen cDNA libraries from different Mediterranean mussel tissues: gills, digestive gland, foot, anterior and posterior adductor muscle, mantle and haemocytes. A total of 24,939 clones were sequenced from these libraries generating 18,788 high-quality ESTs which were assembled into 2,446 overlapping clusters and 4,666 singletons resulting in a total of 7,112 non-redundant sequences. In particular, a high-quality normalized cDNA library (Nor01) was constructed as determined by the high rate of gene discovery (65.6%). Bioinformatic screening of the non-redundant M. galloprovincialis sequences identified 159 microsatellite-containing ESTs. Clusters, consensuses, related similarities and gene ontology searches have been organized in a dedicated, searchable database http://mussel.cribi.unipd.it. CONCLUSION: We defined the first species-specific catalogue of M. galloprovincialis ESTs including 7,112 unique transcribed sequences. Putative microsatellite markers were identified. This annotated catalogue represents a valuable platform for expression studies, marker validation and genetic linkage analysis for investigations in the biology of Mediterranean mussels.


Subject(s)
Databases, Genetic , Expressed Sequence Tags , Knowledge Bases , Mytilus/genetics , Animals , Cluster Analysis , Computational Biology , Gene Library , Genetic Markers , Microsatellite Repeats , Sequence Analysis, DNA , User-Computer Interface
3.
BMC Genomics ; 9: 45, 2008 Jan 28.
Article in English | MEDLINE | ID: mdl-18226200

ABSTRACT

BACKGROUND: Little is known about the genome sequences of Euphausiacea (krill) although these crustaceans are abundant components of the pelagic ecosystems in all oceans and used for aquaculture and pharmaceutical industry. This study reports the results of an expressed sequence tag (EST) sequencing project from different tissues of Euphausia superba (the Antarctic krill). RESULTS: We have constructed and sequenced five cDNA libraries from different Antarctic krill tissues: head, abdomen, thoracopods and photophores. We have identified 1.770 high-quality ESTs which were assembled into 216 overlapping clusters and 801 singletons resulting in a total of 1.017 non-redundant sequences. Quantitative RT-PCR analysis was performed to quantify and validate the expression levels of ten genes presenting different EST countings in krill tissues. In addition, bioinformatic screening of the non-redundant E. superba sequences identified 69 microsatellite containing ESTs. Clusters, consensuses and related similarity and gene ontology searches were organized in a dedicated E. superba database http://krill.cribi.unipd.it. CONCLUSION: We defined the first tissue transcriptional signatures of E. superba based on functional categorization among the examined tissues. The analyses of annotated transcripts showed a higher similarity with genes from insects with respect to Malacostraca possibly as an effect of the limited number of Malacostraca sequences in the public databases. Our catalogue provides for the first time a genomic tool to investigate the biology of the Antarctic krill.


Subject(s)
Euphausiacea/anatomy & histology , Euphausiacea/genetics , Gene Expression Profiling , Transcription, Genetic/genetics , Animals , Computational Biology , Expressed Sequence Tags , Gene Library , Microsatellite Repeats , Organ Specificity , RNA, Messenger/genetics , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, RNA
4.
BMC Biotechnol ; 6: 35, 2006 Jul 18.
Article in English | MEDLINE | ID: mdl-16848907

ABSTRACT

BACKGROUND: Since a milestone work on Neisseria meningitidis B, Reverse Vaccinology has strongly enhanced the identification of vaccine candidates by replacing several experimental tasks using in silico prediction steps. These steps have allowed scientists to face the selection of antigens from the predicted proteome of pathogens, for which cell culture is difficult or impossible, saving time and money. However, this good example of bioinformatics-driven immunology can be further developed by improving in silico steps and implementing biologist-friendly tools. RESULTS: We introduce NERVE (New Enhanced Reverse Vaccinology Environment), an user-friendly software environment for the in silico identification of the best vaccine candidates from whole proteomes of bacterial pathogens. The software integrates multiple robust and well-known algorithms for protein analysis and comparison. Vaccine candidates are ranked and presented in a html table showing relevant information and links to corresponding primary data. Information concerning all proteins of the analyzed proteome is not deleted along selection steps but rather flows into an SQL database for further mining and analyses. CONCLUSION: After learning from recent years' works in this field and analysing a large dataset, NERVE has been implemented and tuned as the first available tool able to rank a restricted pool (approximately 8-9% of the whole proteome) of vaccine candidates and to show high recall (approximately 75-80%) of known protective antigens. These vaccine candidates are required to be "safe" (taking into account autoimmunity risk) and "easy" for further experimental, high-throughput screening (avoiding possibly not soluble antigens). NERVE is expected to help save time and money in vaccine design and is available as an additional file with this manuscript; updated versions will be available at http://www.bio.unipd.it/molbinfo.


Subject(s)
Bacterial Vaccines/chemistry , Bacterial Vaccines/immunology , Computational Biology/methods , Software , Algorithms , Amino Acid Sequence , Antigens, Bacterial/chemistry , Antigens, Bacterial/immunology , Databases, Protein , Internet , Molecular Sequence Data , Proteome/chemistry , Proteome/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...