Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Nat Ecol Evol ; 8(6): 1118-1128, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38769434

ABSTRACT

Many shark populations are in decline around the world, with severe ecological and economic consequences. Fisheries management and marine protected areas (MPAs) have both been heralded as solutions. However, the effectiveness of MPAs alone is questionable, particularly for globally threatened sharks and rays ('elasmobranchs'), with little known about how fisheries management and MPAs interact to conserve these species. Here we use a dedicated global survey of coral reef elasmobranchs to assess 66 fully protected areas embedded within a range of fisheries management regimes across 36 countries. We show that conservation benefits were primarily for reef-associated sharks, which were twice as abundant in fully protected areas compared with areas open to fishing. Conservation benefits were greatest in large protected areas that incorporate distinct reefs. However, the same benefits were not evident for rays or wide-ranging sharks that are both economically and ecologically important while also threatened with extinction. We show that conservation benefits from fully protected areas are close to doubled when embedded within areas of effective fisheries management, highlighting the importance of a mixed management approach of both effective fisheries management and well-designed fully protected areas to conserve tropical elasmobranch assemblages globally.


Subject(s)
Conservation of Natural Resources , Coral Reefs , Fisheries , Sharks , Skates, Fish , Animals , Conservation of Natural Resources/methods
2.
PeerJ ; 11: e15636, 2023.
Article in English | MEDLINE | ID: mdl-37465155

ABSTRACT

Understanding how environmental drivers influence shark and ray spatial and temporal patterns can provide crucial knowledge for their evidence-based protection and long-term monitoring. However, information on which drivers of variation are most important for elasmobranch communities on soft sediments is limited. Using baited remote underwater stereo-video systems (stereo-BRUVs), we investigated how seasonal and environmental variables affected the elasmobranchs of the iSimangaliso Wetland Park marine protected area (MPA) in South Africa (SA). In total, 11 species were identified from 48 sites between 12 m and 33 m water depth in a sandy habitat. While species richness was similar across seasons, the total abundance of elasmobranchs recorded was higher in winter than summer. The species assemblage composition varied significantly between seasons, with the Human's whaler shark Carcharhinus humani prevalent in summer and the Critically Endangered whitespotted wedgefish Rhynchobatus djiddensis more abundant during winter. Most species were sighted throughout the entire depth range, but rays were more common in shallower waters (< 25 m depth), while C. humani and R. djiddensis were more common in the deeper depth zone of this study. This research provides baseline information about this previously unexplored sandy habitat for elasmobranchs in a site of regional and global significance. Records of species of conservation concern in the sampling area highlight the importance of protecting sand environments within an MPA.


Subject(s)
Sharks , Wetlands , Animals , Ecosystem , Sand , Seasons , South Africa
3.
Science ; 380(6650): 1155-1160, 2023 06 16.
Article in English | MEDLINE | ID: mdl-37319199

ABSTRACT

A global survey of coral reefs reveals that overfishing is driving resident shark species toward extinction, causing diversity deficits in reef elasmobranch (shark and ray) assemblages. Our species-level analysis revealed global declines of 60 to 73% for five common resident reef shark species and that individual shark species were not detected at 34 to 47% of surveyed reefs. As reefs become more shark-depleted, rays begin to dominate assemblages. Shark-dominated assemblages persist in wealthy nations with strong governance and in highly protected areas, whereas poverty, weak governance, and a lack of shark management are associated with depauperate assemblages mainly composed of rays. Without action to address these diversity deficits, loss of ecological function and ecosystem services will increasingly affect human communities.


Subject(s)
Conservation of Natural Resources , Coral Reefs , Extinction, Biological , Sharks , Skates, Fish , Animals , Humans , Fisheries , Biodiversity
4.
Hortic Res ; 10(10): uhad191, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38239559

ABSTRACT

In sweet cherry (Prunus avium L.), large variability exists for various traits related to fruit quality. There is a need to discover the genetic architecture of these traits in order to enhance the efficiency of breeding strategies for consumer and producer demands. With this objective, a germplasm collection consisting of 116 sweet cherry accessions was evaluated for 23 agronomic fruit quality traits over 2-6 years, and characterized using a genotyping-by-sequencing approach. The SNP coverage collected was used to conduct a genome-wide association study using two multilocus models and three reference genomes. We identified numerous SNP-trait associations for global fruit size (weight, width, and thickness), fruit cracking, fruit firmness, and stone size, and we pinpointed several candidate genes involved in phytohormone, calcium, and cell wall metabolisms. Finally, we conducted a precise literature review focusing on the genetic architecture of fruit quality traits in sweet cherry to compare our results with potential colocalizations of marker-trait associations. This study brings new knowledge of the genetic control of important agronomic traits related to fruit quality, and to the development of marker-assisted selection strategies targeted towards the facilitation of breeding efforts.

5.
J Environ Manage ; 319: 115691, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35839646

ABSTRACT

Chondrichthyans are threatened worldwide due to their life-history traits combined with a plethora of anthropogenic impacts that are causing populations to collapse. Marine Protected Areas (MPAs) are a conservation option, but their efficacy for chondrichthyans is still unclear. Conservation efforts might be challenging especially in developing countries, due to a lack of resources and monitoring and limited data and stakeholder support. Here Baited Remote Underwater Stereo-Video systems (stereo-BRUVs) were deployed inside and outside a small partially protected MPA (Robberg MPA, Western Cape, South Africa) to assess the status of cartilaginous fishes' assemblages and to investigate the potential benefits derived from the presence of a marine reserve. Overall, 19 chondrichthyan species in 11 different families were observed. Chondrichthyans were observed in 78.5% of the sites and, of these, 89.7% of the MPA sites showed at least one chondrichthyan, while only in the 67.5% of surrounding exploited sites a cartilaginous fish was sighted. The presence of the MPA had a significant effect on the relative abundance of batoids, threatened species and local endemics, with more observations inside the MPA than outside, indicating the potential benefit of marine reserves on species that are more vulnerable to fishing pressure. Relative abundance was generally higher inside the bay than in the exposed area, and both relative abundance and species richness decreased significantly with depth. The analysis of the body length showed that the 35.5% of species had an average body length below maturity length, indicating that the area might be used as nursery ground for different species. This study provides evidence that MPAs, even though small and partially protected, can provide benefits for chondrichthyans, specifically to threatened species, endemic species and lesser-known species. Importantly, different environmental parameters must be considered to maximize the benefits an MPA can provide.


Subject(s)
Conservation of Natural Resources , Endangered Species , Animals , Ecosystem , Fisheries , Fishes , South Africa
6.
Plant Methods ; 16: 115, 2020.
Article in English | MEDLINE | ID: mdl-32863852

ABSTRACT

BACKGROUND: Walnuts are grown worldwide in temperate areas and producers are facing an increasing demand. In a climate change context, the industry also needs cultivars that provide fruits of quality. This quality includes satisfactory filling ratio, thicker shell, ease of cracking, smooth shell and round-shaped walnut, and larger nut size. These desirable traits have been analysed so far using calipers or micrometers, but it takes a lot of time and requires the destruction of the sample. A challenge to take up is to develop an accurate, fast and non-destructive method for quality-related and morphometric trait measurements of walnuts, that are used to characterize new cultivars or collections in any germplasm management process. RESULTS: In this study, we develop a method to measure different morphological traits on several walnuts simultaneously such as morphometric traits (nut length, nut face and profile diameters), traits that previously required opening the nut (shell thickness, kernel volume and filling kernel/nut ratio) and traits that previously were difficult to quantify (shell rugosity, nut sphericity, nut surface area and nut shape). These measurements were obtained from reconstructed 3D images acquired by X-ray computed tomography (CT). A workflow was created including several steps: noise elimination, walnut individualization, properties extraction and quantification of the different parts of the fruit. This method was applied to characterize 50 walnuts of a part of the INRAE walnut germplasm collection made of 161 unique accessions, obtained from the 2018 harvest. Our results indicate that 50 walnuts are sufficient to phenotype the fruit quality of one accession using X-ray CT and to find correlations between the morphometric traits. Our imaging workflow is suitable for any walnut size or shape and provides new and more accurate measurements. CONCLUSIONS: The fast and accurate measurement of quantitative traits is of utmost importance to conduct quantitative genetic analyses or cultivar characterization. Our imaging workflow is well adapted for accurate phenotypic characterization of a various range of traits and could be easily applied to other important nut crops.

8.
Nature ; 583(7818): 801-806, 2020 07.
Article in English | MEDLINE | ID: mdl-32699418

ABSTRACT

Decades of overexploitation have devastated shark populations, leaving considerable doubt as to their ecological status1,2. Yet much of what is known about sharks has been inferred from catch records in industrial fisheries, whereas far less information is available about sharks that live in coastal habitats3. Here we address this knowledge gap using data from more than 15,000 standardized baited remote underwater video stations that were deployed on 371 reefs in 58 nations to estimate the conservation status of reef sharks globally. Our results reveal the profound impact that fishing has had on reef shark populations: we observed no sharks on almost 20% of the surveyed reefs. Reef sharks were almost completely absent from reefs in several nations, and shark depletion was strongly related to socio-economic conditions such as the size and proximity of the nearest market, poor governance and the density of the human population. However, opportunities for the conservation of reef sharks remain: shark sanctuaries, closed areas, catch limits and an absence of gillnets and longlines were associated with a substantially higher relative abundance of reef sharks. These results reveal several policy pathways for the restoration and management of reef shark populations, from direct top-down management of fishing to indirect improvement of governance conditions. Reef shark populations will only have a high chance of recovery by engaging key socio-economic aspects of tropical fisheries.


Subject(s)
Conservation of Natural Resources/statistics & numerical data , Coral Reefs , Ecosystem , Fisheries/economics , Fisheries/statistics & numerical data , Sharks/physiology , Animals , Geographic Mapping , Population Density , Socioeconomic Factors
9.
BMC Genomics ; 21(1): 203, 2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32131731

ABSTRACT

BACKGROUND: Unravelling the genetic architecture of agronomic traits in walnut such as budbreak date and bearing habit, is crucial for climate change adaptation and yield improvement. A Genome-Wide Association Study (GWAS) using multi-locus models was conducted in a panel of 170 walnut accessions genotyped using the Axiom™ J. regia 700 K SNP array, with phenological data from 2018, 2019 and legacy data. These accessions come from the INRAE walnut germplasm collection which is the result of important prospecting work performed in many countries around the world. In parallel, an F1 progeny of 78 individuals segregating for phenology-related traits, was genotyped with the same array and phenotyped for the same traits, to construct linkage maps and perform Quantitative Trait Loci (QTLs) detection. RESULTS: Using GWAS, we found strong associations of SNPs located at the beginning of chromosome 1 with both budbreak and female flowering dates. These findings were supported by QTLs detected in the same genomic region. Highly significant associated SNPs were also detected using GWAS for heterodichogamy and lateral bearing habit, both on chromosome 11. We developed a Kompetitive Allele Specific PCR (KASP) marker for budbreak date in walnut, and validated it using plant material from the Walnut Improvement Program of the University of California, Davis, demonstrating its effectiveness for marker-assisted selection in Persian walnut. We found several candidate genes involved in flowering events in walnut, including a gene related to heterodichogamy encoding a sugar catabolism enzyme and a cell division related gene linked to female flowering date. CONCLUSIONS: This study enhances knowledge of the genetic architecture of important agronomic traits related to male and female flowering processes and lateral bearing in walnut. The new marker available for budbreak date, one of the most important traits for good fruiting, will facilitate the selection and development of new walnut cultivars suitable for specific climates.


Subject(s)
Chromosome Mapping/methods , Genome-Wide Association Study/methods , Juglans/physiology , Quantitative Trait Loci , Chromosomes, Plant/genetics , Juglans/genetics , Linkage Disequilibrium , Phenotype , Polymorphism, Single Nucleotide , Seeds/genetics
10.
Front Plant Sci ; 11: 607213, 2020.
Article in English | MEDLINE | ID: mdl-33584750

ABSTRACT

Elucidating the genetic determinants of fruit quality traits in walnut is essential to breed new cultivars meeting the producers and consumers' needs. We conducted a genome-wide association study (GWAS) using multi-locus models in a panel of 170 accessions of Juglans regia from the INRAE walnut germplasm collection, previously genotyped using the AxiomTM J. regia 700K SNP array. We phenotyped the panel for 25 fruit traits related to morphometrics, shape, volume, weight, ease of cracking, and nutritional composition. We found more than 60 marker-trait associations (MTAs), including a highly significant SNP associated with nut face diameter, nut volume and kernel volume on chromosome 14, and 5 additional associations were detected for walnut weight. We proposed several candidate genes involved in nut characteristics, such as a gene coding for a beta-galactosidase linked to several size-related traits and known to be involved in fruit development in other species. We also confirmed associations on chromosomes 5 and 11 with nut suture strength, recently reported by the University of California, Davis. Our results enhance knowledge of the genetic control of important agronomic traits related to fruit quality in walnut, and pave the way for the development of molecular markers for future assisted selection.

11.
BMC Res Notes ; 12(1): 662, 2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31623654

ABSTRACT

OBJECTIVES: Persian walnut (Juglans regia L.), the walnut species cultivated for nut production, is grown worldwide in temperate areas. In this work, chronological phenotypic data have been collected regarding a part of the walnut genetic resources of the French National Institute for Agricultural Research (INRA) of Bordeaux. Using a well described ontology, these data have been collected in order to assess the phenotypic variations among the accessions, and to better manage the germplasm collection. These data can also be helpful for any breeding program as they provide a clear phenotypic characterization of the main cultivars. DATA DESCRIPTION: This paper introduces a dataset collected for 150 J. regia accessions for a period from 1965 to 2016, and for 3 observation sites, released as comma separated value spreadsheet. It includes observations about phenological traits (e.g. flowering dates), traits related to in-shell walnut (e.g. weight and size), and traits related to kernel (e.g. color). It can be used by other researchers particularly for multi-site phenological studies in the context of climate change since climate data files are also available. In addition, a complete walnut ontology was deposited in this repository and can assist to standardize the management of any walnut germplasm collection.


Subject(s)
Agriculture/methods , Genetic Variation , Juglans/genetics , Nuts/genetics , Climate , Climate Change , France , Juglans/classification , Juglans/growth & development , Nuts/growth & development , Phenotype , Plant Breeding , Species Specificity , Time Factors
12.
Sports Biomech ; 18(6): 571-586, 2019 Dec.
Article in English | MEDLINE | ID: mdl-29562831

ABSTRACT

Tethered swimming is a method often used to measure or enhance the physical and technical resources of swimmers. Although it is highlighted that the technique used in tethered swimming is probably different from that used in free conditions, there are few comparative studies on this subject. The current study aims to compare fully tethered and free swimming based on kinematic hand parameters (orientation, velocity and acceleration of the hand, sweepback and angle of attack), which are known to act directly on the generation of propulsive forces. The results show that there are significant differences during the stretch and catch phases but less during the insweep and upsweep phases. Tethered swimming makes it possible to estimate the propelling forces generated by the hand in free swimming at distance and middle-distance paces, but overestimates it at sprint pace. However, in view of the modifications of the kinematic parameters, it should not be used under repeated conditions of use, such as for the development of swimmers' capacity.


Subject(s)
Physical Conditioning, Human/methods , Swimming/physiology , Acceleration , Adolescent , Biomechanical Phenomena/physiology , Female , Hand/physiology , Humans , Male , Rotation , Time and Motion Studies , Young Adult
13.
PLoS One ; 13(11): e0208021, 2018.
Article in English | MEDLINE | ID: mdl-30481202

ABSTRACT

Persian or English walnut (Juglans regia L.), the walnut species cultivated for nut production, is one of the oldest food sources known and is grown worldwide in temperate areas. France is the 7th leading producer as of 2016 with 39 kt. Deciphering walnut genetic diversity and structure is important for efficient management and use of genetic resources. In this work, 253 worldwide accessions from the INRA walnut germplasm collection, containing English walnut and several related species, were genotyped using 13 SSR (Single Sequence Repeat) markers selected from the literature to assess diversity and structure. Genetic diversity parameters showed a deficiency of heterozygotes and, for several SSRs, allele-specificities among the accessions tested. Principal Coordinate Analysis (PCoA) showed the 253 accessions clustered in largely in agreement with the existing botanical classification of the genus. Among the 217 J. regia accessions, two main clusters, accessions from Eastern Europe and Asia, and accessions from Western Europe and America, were identified using STRUCTURE software. This was confirmed by Principal Coordinate Analysis and supported by Neighbor-Joining tree construction using DARwin software. Moreover, a substructure was found within the two clusters, mainly according to geographical origin. A core collection containing 50 accessions was selected using the maximum length sub-tree method and prior knowledge about their phenotype. The present study constitutes a preliminary population genetics overview of INRA walnut genetic resources collection using SSR markers. The resulting estimations of genetic diversity and structure are useful for germplasm management and for future walnut breeding programs.


Subject(s)
Genetic Variation , Juglans/genetics , Genetic Markers , Juglans/anatomy & histology , Nuts/anatomy & histology , Nuts/genetics , Phenotype , Plant Breeding , Plant Dispersal , Repetitive Sequences, Nucleic Acid , Sequence Analysis, DNA
14.
Comput Methods Biomech Biomed Engin ; 20(7): 783-793, 2017 May.
Article in English | MEDLINE | ID: mdl-28332407

ABSTRACT

The development of codes and power calculations currently allows the simulation of increasingly complex flows, especially in the turbulent regime. Swimming research should benefit from these technological advances to try to better understand the dynamic mechanisms involved in swimming. An unsteady Computational Fluid Dynamics (CFD) study is conducted in crawl, in order to analyse the propulsive forces generated by the hand and forearm. The k-ω SST turbulence model and an overset grid method have been used. The main objectives are to analyse the evolution of the hand-forearm propulsive forces and to explain this relative to the arm kinematics parameters. In order to validate our simulation model, the calculated forces and pressures were compared with several other experimental and numerical studies. A good agreement is found between our results and those of other studies. The hand is the segment that generates the most propulsive forces during the aquatic stroke. As the pressure component is the main source of force, the orientation of the hand-forearm in the absolute coordinate system is an important kinematic parameter in the swimming performance. The propulsive forces are biggest when the angles of attack are high. CFD appears as a very valuable tool to better analyze the mechanisms of swimming performance and offers some promising developments, especially for optimizing the performance from a parametric study.


Subject(s)
Computer Simulation , Hydrodynamics , Swimming/physiology , Biomechanical Phenomena , Forearm/physiology , Friction , Hand/physiology , Humans , Hydrostatic Pressure , Numerical Analysis, Computer-Assisted
15.
PLoS One ; 10(10): e0140270, 2015.
Article in English | MEDLINE | ID: mdl-26461104

ABSTRACT

Marine Protected Areas (MPAs) offer a unique opportunity to test the assumption that fishing pressure affects some trophic groups more than others. Removal of larger predators through fishing is often suggested to have positive flow-on effects for some lower trophic groups, in which case protection from fishing should result in suppression of lower trophic groups as predator populations recover. We tested this by assessing differences in the trophic structure of reef fish communities associated with 79 MPAs and open-access sites worldwide, using a standardised quantitative dataset on reef fish community structure. The biomass of all major trophic groups (higher carnivores, benthic carnivores, planktivores and herbivores) was significantly greater (by 40% - 200%) in effective no-take MPAs relative to fished open-access areas. This effect was most pronounced for individuals in large size classes, but with no size class of any trophic group showing signs of depressed biomass in MPAs, as predicted from higher predator abundance. Thus, greater biomass in effective MPAs implies that exploitation on shallow rocky and coral reefs negatively affects biomass of all fish trophic groups and size classes. These direct effects of fishing on trophic structure appear stronger than any top down effects on lower trophic levels that would be imposed by intact predator populations. We propose that exploitation affects fish assemblages at all trophic levels, and that local ecosystem function is generally modified by fishing.


Subject(s)
Conservation of Natural Resources , Coral Reefs , Fishes/physiology , Animals , Biomass , Confidence Intervals , Geography , Tropical Climate
16.
J Biomech ; 48(14): 3743-50, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26433921

ABSTRACT

The aim of this study was to investigate the evolution of kinematic hand parameters (sweepback angle, angle of attack, velocity, acceleration and orientation of the hand relative to the absolute coordinate system) throughout an aquatic stroke and to study the possible modifications caused by a variation of the swimming pace. Seventeen competitive swimmers swam at long distance, middle distance and sprint paces. Parameters were calculated from the trajectory of seven markers on the hand measured with an optoelectronic system. Results showed that kinematic hand parameters evolve differently depending on the pace. Angle of attack, sweepback angle, acceleration and orientation of the hand do not vary significantly. The velocity of the hand increases when the pace increases, but only during the less propulsive phases (entry and stretch and downsweep to catch). The more the pace increases and the more the absolute durations of the entry and stretch and downsweep to catch phases decrease. Absolute durations of the insweep and upsweep phases remain constant. During these phases, the propulsive hand forces calculated do not vary significantly when the pace increases. The increase of swimming pace is then explained by the swimmer's capacity to maintain propulsive phases rather than increasing the force generation within each cycle.


Subject(s)
Hand/physiology , Swimming/physiology , Acceleration , Adolescent , Biomechanical Phenomena , Female , Humans , Male , Orientation , Young Adult
17.
J Sports Sci ; 33(15): 1535-43, 2015.
Article in English | MEDLINE | ID: mdl-25654468

ABSTRACT

The aim of this study was to determine the role played by the entry-and-stretch phase in the coordination of swimming, at the different paces of race. Three national level swimmers (two men and one woman) were recorded, in lateral and bottom views, in three swimming paces: sprint (50 m and 100 m), middle-distance (200 m and 400 m) and long-distance (800 m and 1500 m). Anatomical landmark positions were obtained by manual digitalisation of the videos. Computational fluid dynamics and experimental studies (with a strain gauge balance and particle image velocimetry method) were used to measure and to calculate the external forces applied to the hand and to the forearm and to visualise the flow around the profile. Entry-and-stretch is the phase which varies the most according to the swimming pace. This phase can be decomposed into two sub-phases: one, the extension forward coordinated with the insweep of the opposite arm, and another one, the rotation downward coordinated with the upsweep. Results show that, at the three paces, this phase is not propulsive and could contribute essentially to maintain the horizontal balance of the body.


Subject(s)
Swimming/physiology , Biomechanical Phenomena/physiology , Computer Simulation , Female , Forearm/physiology , Hand/physiology , Humans , Hydrodynamics , Lasers, Solid-State , Male , Young Adult
18.
Nature ; 506(7487): 216-20, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24499817

ABSTRACT

In line with global targets agreed under the Convention on Biological Diversity, the number of marine protected areas (MPAs) is increasing rapidly, yet socio-economic benefits generated by MPAs remain difficult to predict and under debate. MPAs often fail to reach their full potential as a consequence of factors such as illegal harvesting, regulations that legally allow detrimental harvesting, or emigration of animals outside boundaries because of continuous habitat or inadequate size of reserve. Here we show that the conservation benefits of 87 MPAs investigated worldwide increase exponentially with the accumulation of five key features: no take, well enforced, old (>10 years), large (>100 km(2)), and isolated by deep water or sand. Using effective MPAs with four or five key features as an unfished standard, comparisons of underwater survey data from effective MPAs with predictions based on survey data from fished coasts indicate that total fish biomass has declined about two-thirds from historical baselines as a result of fishing. Effective MPAs also had twice as many large (>250 mm total length) fish species per transect, five times more large fish biomass, and fourteen times more shark biomass than fished areas. Most (59%) of the MPAs studied had only one or two key features and were not ecologically distinguishable from fished sites. Our results show that global conservation targets based on area alone will not optimize protection of marine biodiversity. More emphasis is needed on better MPA design, durable management and compliance to ensure that MPAs achieve their desired conservation value.


Subject(s)
Conservation of Natural Resources/statistics & numerical data , Ecology/statistics & numerical data , Ecosystem , Fisheries/statistics & numerical data , Fishes/physiology , Animals , Aquatic Organisms/physiology , Biodiversity , Biomass , Conservation of Natural Resources/economics , Conservation of Natural Resources/legislation & jurisprudence , Conservation of Natural Resources/methods , Coral Reefs , Ecology/economics , Ecology/legislation & jurisprudence , Ecology/methods , Fisheries/legislation & jurisprudence , Fisheries/standards , Marine Biology/economics , Marine Biology/legislation & jurisprudence , Marine Biology/methods , Marine Biology/statistics & numerical data , Seawater , Sharks , Silicon Dioxide , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...