Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 19(3): e1010487, 2023 03.
Article in English | MEDLINE | ID: mdl-36972310

ABSTRACT

Displaced communication, whereby individuals communicate regarding a subject that is not immediately present (spatially or temporally), is one of the key features of human language. It also occurs in a few animal species, most notably the honeybee, where the waggle dance is used to communicate the location and quality of a patch of flowers. However, it is difficult to study how it emerged given the paucity of species displaying this capacity and the fact that it often occurs via complex multimodal signals. To address this issue, we developed a novel paradigm in which we conducted experimental evolution with foraging agents endowed with neural networks that regulate their movement and the production of signals. Displaced communication readily evolved but, surprisingly, agents did not use signal amplitude to convey information on food location. Instead, they used signal onset-delay and duration-based mode of communication, which depends on the motion of the agent within a communication area. When agents were experimentally prevented from using these modes of communication, they evolved to use signal amplitude instead. Interestingly, this mode of communication was more efficient and led to higher performance. Subsequent controlled experiments suggested that this more efficient mode of communication failed to evolve because it took more generations to emerge than communication grounded on the onset-delay and length of signaling. These results reveal that displaced communication is likely to initially evolve from non-communicative behavioral cues providing incidental information with evolution later leading to more efficient communication systems through a ritualization process.


Subject(s)
Animal Communication , Cues , Animals , Bees , Humans , Feeding Behavior/physiology , Movement , Communication
2.
Trials ; 23(1): 87, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35090554

ABSTRACT

BACKGROUND: Children with Down syndrome have poorer functional and sensory skills compared to children with typical development. Virtual reality (VR) training could help improve these skills. Moreover, transcranial direct current stimulation (tDCS) has achieved promising results in terms of enhancing the effects of physical and sensory therapy by modulating cortical excitability. METHODS/DESIGN: Two investigations are proposed: (1) an observational study with a convenience sample consisting of children with Down syndrome (group 1-cognitive age of 6 to 12 years according to the Wechsler Abbreviated Scale of Intelligence) and children with typical development 6 to 12 years of age (group 2). Both groups will undergo evaluations on a single day involving a three-dimensional analysis of upper limb movements, an analysis of muscle activity of the biceps and brachial triceps muscles and an analysis of visuospatial and cognitive-motor variables. (2) Analysis of clinical intervention: a pilot study and clinical trial will be conducted involving individuals with Down syndrome (cognitive age of 6 to 12 years according to the Wechsler Abbreviated Scale of Intelligence). The sample will be defined after conducting a pilot study with the same methodology as that to be used in the main study. The participants will be randomly allocated to two groups: An experimental group submitted to anodal tDCS combined with a VR game and a manual motor task and a control group submitted to sham tDCS combined with a VR game and a manual motor task. The training protocol will involve 10 sessions of active or sham tDCS during memory and motor task games. Three 20-min sessions will be held per week for a total of 10 sessions. Evaluations will be performed on three different occasions: pre-intervention, post-intervention (after 10 sessions) and follow-up (1 month after the intervention). Evaluations will consist of analyses of electroencephalographic signals, electromyographic signals of the biceps and triceps brachii, and the three-dimensional reconstruction of the reaching movement. The results will be analyzed statistically with the significance level set at 5% (p ≤ 0.05). DISCUSSION: The optimization of the results obtained with virtual reality training is believed to be related to the interactive experience with a wide range of activities and scenarios involving multiple sensory channels and the creation of exercises, the intensity of which can be adjusted to the needs of children. Therefore, the proposed study aims to complement the literature with further information on tDCS and VR training considering different variables to provide the scientific community with clinical data on this combination of interventions. TRIAL REGISTRATION: Brazilian Clinical Trials Registry (REBEC) protocol number RBR-43pk59 registered on 2019 March 27 https://ensaiosclinicos.gov.br/rg/RBR-43pk59 and Human Research Ethics Committee number 3.608.521 approved on 2019 September 30. Protocol version 2021 October 20. Any changes to the protocol will be reported to the committees and approved. Informed consent will be obtained from all participants by the clinical research coordinator and principal investigator.


Subject(s)
Down Syndrome , Transcranial Direct Current Stimulation , Virtual Reality , Brain , Child , Double-Blind Method , Down Syndrome/diagnosis , Down Syndrome/therapy , Humans , Observational Studies as Topic , Pilot Projects , Randomized Controlled Trials as Topic , Upper Extremity
3.
Evol Lett ; 4(3): 257-265, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32547785

ABSTRACT

Social interactions involving coordination between individuals are subject to an "evolutionary trap." Once a suboptimal strategy has evolved, mutants playing an alternative strategy are counterselected because they fail to coordinate with the majority. This creates a detrimental situation from which evolution cannot escape, preventing the evolution of efficient collective behaviors. Here, we study this problem using evolutionary robotics simulations. We first confirm the existence of an evolutionary trap in a simple setting. We then, however, reveal that evolution can solve this problem in a more realistic setting where individuals need to coordinate with one another. In this setting, simulated robots evolve an ability to adapt plastically their behavior to one another, as this improves the efficiency of their interaction. This ability has an unintended evolutionary consequence: a genetic mutation affecting one individual's behavior also indirectly alters their partner's behavior because the two individuals influence one another. As a consequence of this indirect genetic effect, pairs of partners can virtually change strategy together with a single mutation, and the evolutionary barrier between alternative strategies disappears. This finding reveals a general principle that could play a role in nature to smoothen the transition to efficient collective behaviors in all games with multiple equilibriums.

4.
Article in English | MEDLINE | ID: mdl-31192205

ABSTRACT

Hand gesture and grip formations are produced by the muscle synergies arising between extrinsic and intrinsic hand muscles and many functional hand movements involve repositioning of the thumb relative to other digits. In this study we explored whether changes in thumb posture in able-body volunteers can be identified and classified from the modulation of forearm muscle surface-electromyography (sEMG) alone without reference to activity from the intrinsic musculature. In this proof-of-concept study, our goal was to determine if there is scope to develop prosthetic hand control systems that may incorporate myoelectric thumb-position control. Healthy volunteers performed a controlled-isometric grip task with their thumb held in four different opposing-postures. Grip force during task performance was maintained at 30% maximal-voluntary-force and sEMG signals from the forearm were recorded using 2D high-density sEMG (HD-sEMG arrays). Correlations between sEMG amplitude and root-mean squared estimates with variation in thumb-position were investigated using principal-component analysis and self-organizing feature maps. Results demonstrate that forearm muscle sEMG patterns possess classifiable parameters that correlate with variations in static thumb position (accuracy of 88.25 ± 0.5% anterior; 91.25 ± 2.5% posterior musculature of the forearm sites). Of importance, this suggests that in transradial amputees, despite the loss of access to the intrinsic muscles that control thumb action, an acceptable level of control over a thumb component within myoelectric devices may be achievable. Accordingly, further work exploring the potential to provide myoelectric control over the thumb within a prosthetic hand is warranted.

5.
PLoS Comput Biol ; 12(5): e1004886, 2016 05.
Article in English | MEDLINE | ID: mdl-27148874

ABSTRACT

Mutualistic cooperation often requires multiple individuals to behave in a coordinated fashion. Hence, while the evolutionary stability of mutualistic cooperation poses no particular theoretical difficulty, its evolutionary emergence faces a chicken and egg problem: an individual cannot benefit from cooperating unless other individuals already do so. Here, we use evolutionary robotic simulations to study the consequences of this problem for the evolution of cooperation. In contrast with standard game-theoretic results, we find that the transition from solitary to cooperative strategies is very unlikely, whether interacting individuals are genetically related (cooperation evolves in 20% of all simulations) or unrelated (only 3% of all simulations). We also observe that successful cooperation between individuals requires the evolution of a specific and rather complex behaviour. This behavioural complexity creates a large fitness valley between solitary and cooperative strategies, making the evolutionary transition difficult. These results reveal the need for research on biological mechanisms which may facilitate this transition.


Subject(s)
Biological Evolution , Cooperative Behavior , Algorithms , Animals , Computational Biology , Computer Simulation , Female , Game Theory , Genetic Phenomena , Humans , Male , Models, Psychological , Neural Networks, Computer , Predatory Behavior , Robotics
SELECTION OF CITATIONS
SEARCH DETAIL
...