Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 50(13): 7367-7379, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35762231

ABSTRACT

Histone H3 Lysine 9 (H3K9) methylation, a characteristic mark of heterochromatin, is progressively implemented during development to contribute to cell fate restriction as differentiation proceeds. Accordingly, in undifferentiated and pluripotent mouse Embryonic Stem (ES) cells the global levels of H3K9 methylation are rather low and increase only upon differentiation. How global H3K9 methylation levels are coupled with the loss of pluripotency remains largely unknown. Here, we identify SUV39H1, a major H3K9 di- and tri-methylase, as an indirect target of the pluripotency network of Transcription Factors (TFs). We find that pluripotency TFs, principally OCT4, activate the expression of Suv39h1as, an antisense long non-coding RNA to Suv39h1. In turn, Suv39h1as downregulates Suv39h1 transcription in cis via a mechanism involving the modulation of the chromatin status of the locus. The targeted deletion of the Suv39h1as promoter region triggers increased SUV39H1 expression and H3K9me2 and H3K9me3 levels, affecting all heterochromatic regions, particularly peri-centromeric major satellites and retrotransposons. This increase in heterochromatinization efficiency leads to accelerated and more efficient commitment into differentiation. We report, therefore, a simple genetic circuitry coupling the genetic control of pluripotency with the global efficiency of H3K9 methylation associated with a major cell fate restriction, the irreversible loss of pluripotency.


Subject(s)
Histones , Methyltransferases/metabolism , Octamer Transcription Factor-3/metabolism , RNA, Long Noncoding , Repressor Proteins/metabolism , Animals , Chromatin , Histone Code , Histones/genetics , Histones/metabolism , Methylation , Methyltransferases/genetics , Mice , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Repressor Proteins/genetics
2.
Dev Cell ; 56(3): 292-309.e9, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33321106

ABSTRACT

Haploinsufficiency of transcriptional regulators causes human congenital heart disease (CHD); however, the underlying CHD gene regulatory network (GRN) imbalances are unknown. Here, we define transcriptional consequences of reduced dosage of the CHD transcription factor, TBX5, in individual cells during cardiomyocyte differentiation from human induced pluripotent stem cells (iPSCs). We discovered highly sensitive dysregulation of TBX5-dependent pathways-including lineage decisions and genes associated with heart development, cardiomyocyte function, and CHD genetics-in discrete subpopulations of cardiomyocytes. Spatial transcriptomic mapping revealed chamber-restricted expression for many TBX5-sensitive transcripts. GRN analysis indicated that cardiac network stability, including vulnerable CHD-linked nodes, is sensitive to TBX5 dosage. A GRN-predicted genetic interaction between Tbx5 and Mef2c, manifesting as ventricular septation defects, was validated in mice. These results demonstrate exquisite and diverse sensitivity to TBX5 dosage in heterogeneous subsets of iPSC-derived cardiomyocytes and predicts candidate GRNs for human CHDs, with implications for quantitative transcriptional regulation in disease.


Subject(s)
Gene Regulatory Networks , Haploinsufficiency/genetics , Heart Defects, Congenital/genetics , Models, Biological , T-Box Domain Proteins/genetics , Animals , Body Patterning/genetics , Cell Differentiation , Gene Dosage , Heart Ventricles/pathology , Humans , MEF2 Transcription Factors/metabolism , Mice , Mutation/genetics , Myocytes, Cardiac/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...