Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Front Neurosci ; 15: 725873, 2021.
Article in English | MEDLINE | ID: mdl-34566568

ABSTRACT

[11C]Verubulin (a.k.a.[11C]MCP-6827), [11C]HD-800 and [11C]colchicine have been developed for imaging microtubules (MTs) with positron emission tomography (PET). The objective of this work was to conduct an in vivo comparison of [11C]verubulin for MT imaging in mouse and rat brain, as well as an in vitro study with this radiotracer in rodent and human Alzheimer's Disease tissue. Our preliminary PET imaging studies of [11C]verubulin in rodents revealed contradictory results between mouse and rat brain uptake under pretreatment conditions. In vitro autoradiography with [11C]verubulin showed an unexpected higher uptake in AD patient tissue compared with healthy controls. We also conducted the first comparative in vivo PET imaging study with [11C]verubulin, [11C]HD-800 and [11C]colchicine in a non-human primate. [11C]Verubulin and [11C]HD-800 require pharmacokinetic modeling and quantification studies to understand the role of how these radiotracers bind to MTs before translation to human use.

2.
J Fluor Chem ; 2452021 May.
Article in English | MEDLINE | ID: mdl-33840834

ABSTRACT

Glycogen synthase kinase 3 (GSK-3) is an enzyme that is dysregulated in oncology neurodegeneration, neuroinflammation and several mental health illnesses. As such, GSK-3 is a long-sought after target for positron emission tomography (PET) imaging and therapeutic intervention. Herein, we report on the development and radiofluorination of two oxazole-4-carboxamides, including one bearing a non-activated aromatic ring. Both compounds demonstrated excellent selectivity in a kinase screen and inhibit GSK-3 with high affinity. [18F]OCM-49 was synthesized from [18F]fluoride using a copper-mediated reaction of an aryl boronic acid precursor, while [18F]OCM-50 used a trimethylammonium triflate precursor, and both radiotracers were translated for preclinical PET imaging in rodents. Due to superior radiochemical yields and brain uptake (peak standardized uptake value of ~2.0), [18F]OCM-50 was further evaluated in non-human primate and also showed good brain uptake and rapid clearance. Further studies to consider clinical translation of both radiotracers are underway.

3.
J Labelled Comp Radiopharm ; 63(3): 144-150, 2020 03.
Article in English | MEDLINE | ID: mdl-31919878

ABSTRACT

Herein we report an efficient radiolabeling of a 18 F-fluorinated derivative of dual inhibitor GW2580, with its subsequent evaluation as a positron emission tomography (PET) tracer candidate for imaging of two neuroreceptor targets implicated in the pathophysiology of neurodegeneration: tropomyosin receptor kinases (TrkB/C) and colony stimulating factor receptor (CSF-1R). [18 F]FOMPyD was synthesized from a boronic acid pinacolate precursor via copper-mediated 18 F-fluorination concerted with thermal deprotection of the four Boc groups on a diaminopyrimidine moiety in an 8.7±2.8% radiochemical yield, a radiochemical purity >99%, and an effective molar activity of 187±93 GBq/µmol. [18 F]FOMPyD showed moderate brain permeability in wild-type rats (SUVmax = 0.75) and a slow washout rate. The brain uptake was partially reduced (ΔAUC40-90 = 11.6%) by administration of the nonradioactive FOMPyD (up to 30 µg/kg). In autoradiography, [18 F]FOMPyD exhibits ubiquitous distribution in rat and human brain tissues with relatively high nonspecific binding revealed by self-blocking experiment. The binding was blocked by TrkB/C inhibitors, but not with a CSF-1R inhibitor, suggesting selective binding to the former receptor. Although an unfavorable pharmacokinetic profile will likely preclude application of [18 F]FOMPyD as a PET tracer for brain imaging, the concomitant one-pot copper-mediated 18 F-fluorination/Boc-deprotection is a practical technique for the automated radiosynthesis of acid-sensitive PET tracers.


Subject(s)
Membrane Glycoproteins/metabolism , Positron-Emission Tomography/methods , Receptor, trkB/metabolism , Receptor, trkC/metabolism , Animals , Brain/drug effects , Brain/metabolism , Cell Line, Tumor , Humans , Male , Radiochemistry , Rats
4.
J Med Chem ; 62(21): 9600-9617, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31535859

ABSTRACT

Using structure-guided design, several cell based assays, and microdosed positron emission tomography (PET) imaging, we identified a series of highly potent, selective, and brain-penetrant oxazole-4-carboxamide-based inhibitors of glycogen synthase kinase-3 (GSK-3). An isotopologue of our first-generation lead, [3H]PF-367, demonstrates selective and specific target engagement in vitro, irrespective of the activation state. We discovered substantial ubiquitous GSK-3-specific radioligand binding in Tg2576 Alzheimer's disease (AD), suggesting application for these compounds in AD diagnosis and identified [11C]OCM-44 as our lead GSK-3 radiotracer, with optimized brain uptake by PET imaging in nonhuman primates. GSK-3ß-isozyme selectivity was assessed to reveal OCM-51, the most potent (IC50 = 0.030 nM) and selective (>10-fold GSK-3ß/GSK-3α) GSK-3ß inhibitor known to date. Inhibition of CRMP2T514 and tau phosphorylation, as well as favorable therapeutic window against WNT/ß-catenin signaling activation, was observed in cells.


Subject(s)
Brain/metabolism , Drug Discovery , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Positron-Emission Tomography/methods , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Animals , Blood-Brain Barrier/metabolism , Brain/diagnostic imaging , Catalytic Domain , Glycogen Synthase Kinase 3 beta/chemistry , HEK293 Cells , Humans , Mice , Models, Molecular , Neuroimaging , Oxazoles/chemistry , Oxazoles/metabolism , Oxazoles/pharmacology , Protein Kinase Inhibitors/metabolism , Triazoles/chemistry , Triazoles/metabolism , Triazoles/pharmacology
5.
Bioorg Med Chem Lett ; 29(13): 1624-1627, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31060887

ABSTRACT

Carbon-11 labeled SL25.1188 is a promising reversible monoamine oxidase-B (MAO-B) radioligand that was recently translated for human positron emission tomography (PET) imaging. Herein, we report the development of a novel fluorinated derivative, namely, [18F](S)-3-(6-(3-fluoropropoxy)benzo[d]isoxazol-3-yl)-5-(methoxymethyl)oxazolidin-2-one ([18F]FSL25.1188; [18F]6), as a candidate 18F-labeled MAO-B radioligand, and, its subsequent preclinical evaluation in non-human primates (NHP). [18F]6 was produced and isolated (>6 GBq) with high radiochemical purity (>99%), and molar activity (>100 GBq/µmol at time of injection). Autoradiography studies conducted in post-mortem human brain sections revealed [18F]6 binding in MAO-B rich regions. PET imaging study of [18F]6 in NHP showed high brain uptake (SUV > 2.5) as well as a regional brain radioactivity distribution in accordance with MAO-B expression. [18F]6 displayed favorable in vivo kinetics, with an early peak in the time-activity curve followed by progressive wash-out from the NHP brain. Specificity of [18F]6 was investigated in a pre-treatment study with l-deprenyl (1.0 mg/kg) wherein reduced radioligand uptake was observed in all MAO-B rich regions. Results from the current preclinical investigation suggests [18F]6 is a promising MAO-B PET radioligand. Further evaluation of [18F]6 and structurally related 18F-analogs are underway to identify an optimized candidate for clinical research studies.


Subject(s)
Monoamine Oxidase/metabolism , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemical synthesis , Humans
6.
ACS Chem Neurosci ; 10(6): 2697-2702, 2019 06 19.
Article in English | MEDLINE | ID: mdl-31017386

ABSTRACT

The tropomyosin receptor kinase TrkA/B/C family is responsible for human neuronal growth, survival, and differentiation from early nervous system development stages onward. Downregulation of TrkA/B/C receptors characterizes numerous neurological disorders including Alzheimer's disease (AD). Abnormally expressed Trk receptors or chimeric Trk fusion proteins are also well-characterized oncogenic drivers in a variety of neurogenic and non-neurogenic human neoplasms and are currently the focus of intensive clinical research. Previously, we have described the clinical translation of a highly selective and potent carbon-11-labeled pan-Trk radioligand and the preclinical characterization of the optimized fluorine-18-labeled analogue, [18F]TRACK, for in vivo Trk positron emission tomography (PET) imaging. We describe herein central nervous system selectivity assessment and first-in-human study of [18F]TRACK.


Subject(s)
Brain/metabolism , Fluorine Radioisotopes/pharmacokinetics , Neuroimaging/methods , Positron-Emission Tomography/methods , Radiopharmaceuticals/pharmacokinetics , Receptor Protein-Tyrosine Kinases/analysis , Animals , Humans , Membrane Glycoproteins/analysis , Membrane Glycoproteins/metabolism , Mice , Receptor Protein-Tyrosine Kinases/metabolism , Receptor, trkA/analysis , Receptor, trkA/metabolism , Receptor, trkB/analysis , Receptor, trkB/metabolism , Receptor, trkC/analysis , Receptor, trkC/metabolism
7.
Front Chem ; 7: 23, 2019.
Article in English | MEDLINE | ID: mdl-30815434

ABSTRACT

Interleukin-1ß (IL-1ß) binds to the IL-1 receptor (IL-1R) and is a key cytokine mediator of inflammasome activation. IL-1ß signaling leads to parturition in preterm birth (PTB) and contributes to the retinal vaso-obliteration characteristic of oxygen-induced retinopathy (OIR) of premature infants. Therapeutics targeting IL-1ß and IL-1R are approved to treat rheumatoid arthritis; however, all are large proteins with clinical limitations including immunosuppression, due in part to inhibition of NF-κB signaling, which is required for immuno-vigilance and cytoprotection. The all-D-amino acid peptide 1 (101.10, H-d-Arg-d-Tyr-d-Thr-d-Val-d-Glu-d-Leu-d-Ala-NH2) is an allosteric IL-1R modulator, which exhibits functional selectivity and conserves NF-κB signaling while inhibiting other IL-1-activated pathways. Peptide 1 has proven effective in experimental models of PTB and OIR. Seeking understanding of the structural requirements for the activity and biased signaling of 1, a panel of twelve derivatives was synthesized employing the various stereochemical isomers of α-amino-γ-lactam (Agl) and α-amino-ß-hydroxy-γ-lactam (Hgl) residues to constrain the D-Thr-D-Val dipeptide residue. Using circular dichroism spectroscopy, the peptide conformation in solution was observed to be contingent on Agl, Hgl, and Val stereochemistry. Moreover, the lactam mimic structure and configuration influenced biased IL-1 signaling in an in vitro panel of cellular assays as well as in vivo activity in murine models of PTB and OIR. Remarkably, all Agl and Hgl analogs of peptide 1 did not inhibit NF-κB signaling but blocked other pathways, such as JNK and ROCK2 phosphorylation contingent on structure and configuration. Efficacy in preventing preterm labor correlated with a capacity to block IL-1ß-induced IL-1ß synthesis. Furthermore, the importance of inhibition of JNK and ROCK2 phosphorylation for enhanced activity was highlighted for prevention of vaso-obliteration in the OIR model. Taken together, lactam mimic structure and stereochemistry strongly influenced conformation and biased signaling. Selective modulation of IL-1 signaling was proven to be particularly beneficial for curbing inflammation in models of preterm labor and retinopathy of prematurity (ROP). A class of biased ligands has been created with potential to serve as selective probes for studying IL-1 signaling in disease. Moreover, the small peptide mimic prototypes are promising leads for developing immunomodulatory therapies with easier administration and maintenance of beneficial effects of NF-κB signaling.

8.
Pharmaceuticals (Basel) ; 12(1)2019 Jan 03.
Article in English | MEDLINE | ID: mdl-30609832

ABSTRACT

The tropomyosin receptor kinases family (TrkA, TrkB, and TrkC) supports neuronal growth, survival, and differentiation during development, adult life, and aging. TrkA/B/C downregulation is a prominent hallmark of various neurological disorders including Alzheimer's disease (AD). Abnormally expressed or overexpressed full-length or oncogenic fusion TrkA/B/C proteins were shown to drive tumorigenesis in a variety of neurogenic and non-neurogenic human cancers and are currently the focus of intensive clinical research. Neurologic and oncologic studies of the spatiotemporal alterations in TrkA/B/C expression and density and the determination of target engagement of emerging antineoplastic clinical inhibitors in normal and diseased tissue are crucially needed but have remained largely unexplored due to the lack of suitable non-invasive probes. Here, we review the recent development of carbon-11- and fluorine-18-labeled positron emission tomography (PET) radioligands based on specifically designed small molecule kinase catalytic domain-binding inhibitors of TrkA/B/C. Basic developments in medicinal chemistry, radiolabeling and translational PET imaging in multiple species including humans are highlighted.

9.
Mol Imaging ; 17: 1536012118792317, 2018.
Article in English | MEDLINE | ID: mdl-30203712

ABSTRACT

The dynamic and multicellular processes of neuroinflammation are mediated by the nonneuronal cells of the central nervous system, which include astrocytes and the brain's resident macrophages, microglia. Although initiation of an inflammatory response may be beneficial in response to injury of the nervous system, chronic or maladaptive neuroinflammation can have harmful outcomes in many neurological diseases. An acute neuroinflammatory response is protective when activated neuroglia facilitate tissue repair by releasing anti-inflammatory cytokines and neurotrophic factors. On the other hand, chronic neuroglial activation is a major pathological mechanism in neurodegenerative diseases, likely contributing to neuronal dysfunction, injury, and disease progression. Therefore, the development of specific and sensitive probes for positron emission tomography (PET) studies of neuroinflammation is attracting immense scientific and clinical interest. An early phase of this research emphasized PET studies of the prototypical imaging biomarker of glial activation, translocator protein-18 kDa (TSPO), which presents difficulties for quantitation and lacks absolute cellular specificity. Many alternate molecular targets present themselves for PET imaging of neuroinflammation in vivo, including enzymes, intracellular signaling molecules as well as ionotropic, G-protein coupled, and immunoglobulin receptors. We now review the lead structures in radiotracer development for PET studies of neuroinflammation targets for neurodegenerative diseases extending beyond TSPO, including glycogen synthase kinase 3, monoamine oxidase-B, reactive oxygen species, imidazoline-2 binding sites, cyclooxygenase, the phospholipase A2/arachidonic acid pathway, sphingosine-1-phosphate receptor-1, cannabinoid-2 receptor, the chemokine receptor CX3CR1, purinergic receptors: P2X7 and P2Y12, the receptor for advanced glycation end products, Mer tyrosine kinase, and triggering receptor expressed on myeloid cells-1. We provide a brief overview of the cellular expression and function of these targets, noting their selectivity for astrocytes and/or microglia, and highlight the classes of PET radiotracers that have been investigated in early-stage preclinical or clinical research studies of neuroinflammation.


Subject(s)
Brain/diagnostic imaging , Brain/pathology , Inflammation/diagnostic imaging , Neurodegenerative Diseases/diagnostic imaging , Positron-Emission Tomography , Radiopharmaceuticals/chemistry , Receptors, GABA/metabolism , Animals , Humans
10.
Chem Commun (Camb) ; 54(84): 11835-11842, 2018 Oct 18.
Article in English | MEDLINE | ID: mdl-30191929

ABSTRACT

Advances in the field of fluorine chemistry have been applied extensively to the syntheses of 18F-labelled organic compounds and radiopharmaceuticals. However, 18F has sparely been used as a tool to explore inorganic chemistry and can be viewed as a research area worthy of further development. This review highlights the application of 18F in development of inorganic fluorinating agents, mechanistic studies and imaging tools.

11.
Mol Pharm ; 15(2): 695-702, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29298483

ABSTRACT

Dyshomeostasis or abnormal accumulation of metal ions such as copper, zinc, and iron have been linked to the pathogenesis of multiple neurodegenerative disorders including Alzheimer's disease (AD) and Huntington's disease (HD). 5,7-Dichloro-2-((dimethylamino)methyl)quinolin-8-ol, PBT2, is a second generation metal protein-attenuating compound that has recently advanced in Phase II clinical trials for the treatment of AD and HD based on promising preclinical efficacy data. Herein, we report the first radiosynthesis and preclinical positron emission tomography (PET) neuroimaging evaluation of [11C]PBT2 in rodents and nonhuman primates. Carbon-11 labeled PBT2 was synthesized in 4.8 ± 0.5% (nondecay corrected) radiochemical yield (RCY) at end-of-synthesis, based upon [11C]CH3I (n = 6), with >99% radiochemical purity and 80-90 GBq/µmol molar activity (Am) from the corresponding normethyl precursor. In the nonhuman primate brain, [11C]PBT2 uptake was extensive with peak concentration SUVpeak of 3.2-5.2 within 2.5-4.5 min postinjection in all cortical and subcortical gray matter regions (putamen > caudate > cortex ≫ white matter) followed by rapid washout from normal brain tissues. Furthermore, it is shown that [11C]PBT2 binds specifically in AD human brain tissue in vitro. The results presented here, combined with the clinical data available for PBT2, warrant the evaluation of [11C]PBT2 as an exploratory PET radiotracer in humans.


Subject(s)
Carbon Radioisotopes , Clioquinol/analogs & derivatives , Neuroimaging/methods , Positron-Emission Tomography/methods , Radiopharmaceuticals/administration & dosage , Alzheimer Disease/pathology , Animals , Autoradiography , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , Clioquinol/administration & dosage , Clioquinol/chemical synthesis , Clioquinol/pharmacokinetics , Drug Evaluation, Preclinical , Female , Humans , Male , Mice, Inbred BALB C , Papio anubis , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics
12.
J Nucl Med ; 59(4): 568-572, 2018 04.
Article in English | MEDLINE | ID: mdl-29284673

ABSTRACT

Straightforward radiosynthesis protocols for 18F-labeled radiopharmaceuticals are an indispensable but often overlooked prerequisite to successfully perform molecular imaging studies in vivo by PET. In recent years, thanks to the expansion of the 18F chemical toolbox, structurally diverse and novel clinically relevant radiopharmaceuticals have been synthesized with both high efficiency and ready implementation. This article provides an overview of recent 18F-labeling methodologies, specifically for B-18F, Si-18F, Al-18F, and iodine (III)-mediated radiofluorination via the spirocyclic iodonium ylide technology.


Subject(s)
Fluorine Radioisotopes/chemistry , Halogenation , Radiochemistry/methods , Spiro Compounds/chemistry , Aluminum/chemistry , Boron/chemistry , Carbon/chemistry , Silicon/chemistry
13.
J Med Chem ; 61(4): 1737-1743, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29257860

ABSTRACT

Changes in expression and dysfunctional signaling of TrkA/B/C receptors and oncogenic Trk fusion proteins are found in neurological diseases and cancers. Here, we describe the development of a first 18F-labeled optimized lead suitable for in vivo imaging of Trk, [18F]TRACK, which is radiosynthesized with ease from a nonactivated aryl precursor concurrently combining largely reduced P-gp liability and improved brain kinetics compared to previous leads while displaying high on-target affinity and human kinome selectivity.


Subject(s)
Fluorine Radioisotopes , Positron-Emission Tomography/methods , Receptor, trkA/antagonists & inhibitors , Drug Design , Humans , Neoplasms/diagnostic imaging , Neurodegenerative Diseases/diagnostic imaging , Protein Kinase Inhibitors
14.
J Labelled Comp Radiopharm ; 61(3): 228-236, 2018 03.
Article in English | MEDLINE | ID: mdl-29143408

ABSTRACT

In this paper, we describe the use of Cu-mediated [18 F]fluorodeboronation for the automated production of positron emission tomography radiotracers suitable for clinical use. Two recurrent issues with the method, low radiochemical conversion on automation and protoarene byproduct purification issues, have been successfully addressed. The new method was utilized to produce sterile injectable doses of [18 F]-(±)-IPMICF17, a positron emission tomography radiotracer for tropomyosin receptor kinase B/C, using an automated synthesis module. The product was isolated in 1.9 ± 0.1% isolated radiochemical yield, excellent radiochemical purity (>99%), and high specific activity (5294 ± 1227 Ci/mmol). Quality control testing confirmed that doses were suitable for clinical use.


Subject(s)
Fluorine Radioisotopes/chemistry , Radiopharmaceuticals/chemical synthesis , Automation/methods , Boron/chemistry , Copper/chemistry , Imidazoles/chemistry , Ligands , Positron-Emission Tomography/methods , Pyridazines/chemistry , Receptor, trkB/metabolism , Receptor, trkC/metabolism
15.
Drug Discov Today Technol ; 25: 19-26, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29233263

ABSTRACT

Project-specific collaborations between academia and pharmaceutical partners are a growing phenomenon within molecular imaging and in particular in the positron emission tomography (PET) radiopharmaceutical community. This cultural shift can be attributed in part to decreased public funding in academia in conjunction with the increased reliance on outsourcing of chemistry, radiochemistry, pharmacology and molecular imaging studies by the pharmaceutical industry. This account highlights some of our personal experiences working with industrial partners to develop new PET radiochemistry methodologies for drug discovery and neuro-PET research studies. These symbiotic academic-industrial partnerships have not only led to novel radiotracers for new targets but also to the application of new carbon-11 and fluorine-18 labeling methodologies and technologies to label previously unprecedented compounds for in vivo evaluations.


Subject(s)
Drug Discovery , Positron-Emission Tomography , Radiopharmaceuticals , Animals , Drug Industry , Humans , Intersectoral Collaboration , Universities
16.
Semin Nucl Med ; 47(5): 474-492, 2017 09.
Article in English | MEDLINE | ID: mdl-28826522

ABSTRACT

Prosthetic group (PG) applications in 18F-radiochemistry play a pivotal role among current 18F-labeling techniques for the development and availability of 18F-labeled imaging probes for PET (Wahl, 2002) (1). The introduction and popularization of PGs in the mid-80s by pioneers in 18F-radiochemistry has profoundly changed the landscape of available tracers for PET and has led to a multitude of new imaging agents based on simple and efficiently synthesized PGs. Because of the chemical nature of anionic 18F- (apart from electrophilic low specific activity 18F-fluorine), radiochemistry before the introduction of PGs was limited to simple nucleophilic substitutions of leaving group containing precursor molecules. These precursors were not always available, and some target compounds were either hard to synthesize or not obtainable at all. Even with the advent of recently introduced "late-stage fluorination" techniques for the 18F-fluorination of deactivated aromatic systems, PGs will continue to play a central role in 18F-radiochemistry because of their robust and almost universal usability. The importance of PGs in radiochemistry is shown by its current significance in tracer development and exemplified by an overview of selected methodologies for PG attachment to PET tracer molecules. Especially, click-chemistry approaches to PG conjugation, while furthering the historical evolution of PGs in PET tracer design, play a most influential role in modern PG utilization. All earlier and recent multifaceted approaches in PG development have significantly enriched the contingent of modern 18F-radiochemistry procedures and will continue to do so.


Subject(s)
Fluorodeoxyglucose F18 , Positron-Emission Tomography , Fluorine Radioisotopes , Halogenation , Radiochemistry
17.
J Med Chem ; 60(16): 6897-6910, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28696690

ABSTRACT

The proto-oncogenes NTRK1/2/3 encode the tropomyosin receptor kinases TrkA/B/C which play pivotal roles in neurobiology and cancer. We describe herein the discovery of [11C]-(R)-3 ([11C]-(R)-IPMICF16), a first-in-class positron emission tomography (PET) TrkB/C-targeting radiolabeled kinase inhibitor lead. Relying on extensive human kinome vetting, we show that (R)-3 is the most potent and most selective TrkB/C inhibitor characterized to date. It is demonstrated that [11C]-(R)-3 readily crosses the blood-brain barrier (BBB) in rodents and selectively binds to TrkB/C receptors in vivo, as evidenced by entrectinib blocking studies. Substantial TrkB/C-specific binding in human brain tissue is observed in vitro, with specific reduction in the hippocampus of Alzheimer's disease (AD) versus healthy brains. We additionally provide preliminary translational data regarding the brain disposition of [11C]-(R)-3 in primates including first-in-human assessment. These results illustrate for the first time the use of a kinome-wide selective radioactive chemical probe for endogenous kinase PET neuroimaging in human.


Subject(s)
Imidazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridazines/pharmacology , Radiopharmaceuticals/pharmacology , Receptor, trkB/antagonists & inhibitors , Receptor, trkC/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Alzheimer Disease/diagnostic imaging , Animals , Benzamides/pharmacology , Blood-Brain Barrier/metabolism , Brain/diagnostic imaging , Brain/metabolism , Carbon Radioisotopes , Dogs , Humans , Imidazoles/chemical synthesis , Imidazoles/pharmacokinetics , Indazoles/pharmacology , Macaca mulatta , Madin Darby Canine Kidney Cells , Membrane Glycoproteins/antagonists & inhibitors , Mice , Neuroimaging , Positron-Emission Tomography , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Pyridazines/chemical synthesis , Pyridazines/pharmacokinetics , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics , Rats, Sprague-Dawley , Receptor, trkA/antagonists & inhibitors , Stereoisomerism , Structure-Activity Relationship
18.
Bioorg Med Chem Lett ; 27(12): 2771-2775, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28476569

ABSTRACT

NTRK1/2/3 fusions have recently been characterized as low incidence oncogenic alterations across various tumor histologies. Tyrosine kinase inhibitors (TKIs) of the tropomyosin receptor kinase family TrkA/B/C (encoded by NTRK1/2/3) are showing promises in the clinic for the treatment of cancer patients whose diseases harbor NTRK tumor drivers. We describe herein the development of [18F]QMICF ([18F]-(R)-9), a quinazoline-based type-II pan-Trk radiotracer with nanomolar potencies for TrkA/B/C (IC50=85-650nM) and relevant TrkA fusions including TrkA-TPM3 (IC50=162nM). Starting from a racemic FLT3 (fms like tyrosine kinase 3) inhibitor lead with off-target TrkA activity ((±)-6), we developed and synthesized the fluorinated derivative (R)-9 in three steps and 40% overall chemical yield. Compound (R)-9 displays a favorable selectivity profile on a diverse set of kinases including FLT3 (>37-fold selectivity for TrkB/C). The mesylate precursor 16 required for the radiosynthesis of [18F]QMICF was obtained in six steps and 36% overall yield. The results presented herein support the further exploration of [18F]QMICF for imaging of Trk fusions in vivo.


Subject(s)
Drug Design , Positron-Emission Tomography , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Radiopharmaceuticals/pharmacology , Dose-Response Relationship, Drug , Fluorine Radioisotopes , Humans , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Quinazolines/chemical synthesis , Quinazolines/chemistry , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/chemistry , Receptor, trkA/antagonists & inhibitors , Receptor, trkB/antagonists & inhibitors , Receptor, trkC/antagonists & inhibitors , Structure-Activity Relationship
19.
Expert Opin Ther Pat ; 27(6): 733-751, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28270010

ABSTRACT

INTRODUCTION: Tropomyosin receptor kinases (TrkA/B/C) play crucial roles in the development and maintenance of the nervous system, and aberrant expression of Trk has been implicated in neurological disorders as well as neural and non-neural neoplasms. Patent activity encompassing Trk inhibitors has grown substantially over the last 6 years, recognized by a rise in the number of pharmaceutical entrants to the field and the escalation of novel inhibitor chemotypes. Area covered: In Part I of this two part review, a biological and structural overview of Trk is provided in the context of Trk as a therapeutic target for cancer and pain, followed by the report of recent patent literature claiming small molecule inhibitors of Trk family kinases or which describe inhibitors developed for other kinase targets but include noteworthy Trk inhibition/application. The discussion of the patent literature continues in Part II of this review, which includes an in-depth view of the current clinical applications of Trk inhibitors. Expert opinion: Substantial synthetic efforts in Trk inhibitor development has propagated numerous and diverse inhibitor chemotypes, including TrkA-specific inhibitors. While many novel Trk inhibitors remain the original progeny of Trk-specific development programs, kinase inhibitors initially developed for other kinases have also been successfully repositioned for Trk.


Subject(s)
Receptor, trkA/antagonists & inhibitors , Receptor, trkB/antagonists & inhibitors , Receptor, trkC/antagonists & inhibitors , Animals , Drug Design , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Pain/drug therapy , Pain/physiopathology , Patents as Topic , Protein Kinase Inhibitors/pharmacology
20.
Expert Opin Ther Pat ; 27(7): 831-849, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28270021

ABSTRACT

INTRODUCTION: TrkA/B/C receptor activation supports growth, survival, and differentiation of discrete neuronal populations during development, adult life, and ageing but also plays numerous roles in human disease onset and progression. Trk-specific inhibitors have therapeutic applications in cancer and pain and thus constitute a growing area of interest in oncology and neurology. There has been substantial growth in the number of structural classes of Trk inhibitors and the number of industrial entrants to the Trk inhibitor field over the past six years. Areas covered: In Part II of this two-part review, the discussion of recent patent literature covering Trk family inhibitors is continued from Part I and clinical research with Trk inhibitors is considered. Expert opinion: Trk has been molecularly targeted for over a decade resulting in the progressive evolution of structurally diversified Trk inhibitors arising from scaffold hopping and HTS efforts. Correspondingly, there have been a growing number of clinical investigations utilizing Trk inhibitors in recent years, with a particular focus on the treatment of NTRK-fusion positive cancers and chronic pain. The observed potential of Trk inhibitors to cause adverse CNS side effects however suggests the need for a more rigorous consideration of BBB permeation capabilities during drug development.


Subject(s)
Receptor, trkA/antagonists & inhibitors , Receptor, trkB/antagonists & inhibitors , Receptor, trkC/antagonists & inhibitors , Animals , Chronic Pain/drug therapy , Drug Design , Humans , Neoplasms/drug therapy , Patents as Topic , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...