Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Res Bull ; 175: 1-15, 2021 10.
Article in English | MEDLINE | ID: mdl-34280479

ABSTRACT

Progressive multiple sclerosis (PMS) is a neurological disease associated with the development of depression and anxiety, but treatments available are unsatisfactory. The transient receptor potential ankyrin 1 (TRPA1) is a cationic channel activated by reactive compounds, and the blockage of this receptor can reduce depression- and anxiety-like behaviors in naive mice. Thus, we investigated the role of TRPA1 in depression- and anxiety-like behaviors in a PMS model in mice. PMS model was induced in C57BL/6 female mice by the experimental autoimmune encephalomyelitis (EAE). Nine days after the PMS-EAE induction, behavioral tests (tail suspension and elevated plus maze tests) were performed to verify the effects of sertraline (positive control), selective TRPA1 antagonist (A-967,079), and antioxidants (α-lipoic acid and apocynin). The prefrontal cortex and hippocampus were collected to evaluate biochemical and inflammatory markers. PMS-EAE induction did not cause locomotor changes but triggered depression- and anxiety-like behaviors, which were reversed by sertraline, A-967,079, α-lipoic acid, or apocynin treatments. The neuroinflammatory markers (AIF1, GFAP, IL-1ß, IL-17, and TNF-α) were increased in mice's hippocampus. Moreover, this model did not alter TRPA1 RNA expression levels in the hippocampus but decrease TRPA1 levels in the prefrontal cortex. Moreover, PMS-EAE induced an increase in NADPH oxidase and superoxide dismutase activities and TRPA1 endogenous agonist levels (hydrogen peroxide and 4-hydroxynonenal). TRPA1 plays a fundamental role in depression- and anxiety-like behaviors in a PMS-EAE model; thus, it could be a possible pharmacological target for treating these symptoms in PMS.


Subject(s)
Anxiety/genetics , Anxiety/psychology , Behavior, Animal , Depression/genetics , Depression/psychology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/psychology , Multiple Sclerosis, Chronic Progressive/genetics , Multiple Sclerosis, Chronic Progressive/psychology , TRPA1 Cation Channel/genetics , Animals , Antioxidants/pharmacology , Female , Hindlimb Suspension , Hippocampus/drug effects , Hippocampus/metabolism , Inflammation Mediators/metabolism , Mice , Mice, Inbred C57BL , Oximes/pharmacology , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Selective Serotonin Reuptake Inhibitors/pharmacology , Sertraline/pharmacology , TRPA1 Cation Channel/antagonists & inhibitors
2.
Eur J Pharmacol ; 904: 174185, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34015320

ABSTRACT

Chronic pain is a common symptom experienced during cancer progression. Additionally, some patients experience bone pain caused by cancer metastasis, which further complicates the prognosis. Cancer pain is often treated using opioid-based pharmacotherapy, but these drugs possess several adverse effects. Accordingly, new mechanisms for cancer pain management are being explored, including transient receptor potential channels (TRPs). TRP ion channels are expressed in several tissues and play a key role in pain detection, especially TRP vanilloid 1 (TRPV1) and TRP ankyrin 1 (TRPA1). In the present review, we describe the role of TRPV1 and TRPA1 involved in cancer pain mechanisms. Several studies have revealed that the administration of TRPV1 or TRPA1 agonists/antagonists and TRPV1 or TRPA1 knockdown reduced sensitivity to nociception in cancer pain models. TRPV1 was also found to be involved in various models of cancer-induced bone pain (CIBP), with TRPV1 expression reportedly enhanced in some models. These studies have demonstrated the TRPV1 or TRPA1 association with cancer pain in models induced by tumour cell inoculation into the bone cavity, hind paw, mammary fat pad, and sciatic nerve in mice or rats. To date, only resiniferatoxin, a TRPV1 agonist, has been evaluated in clinical trials for cancer pain and showed preliminary positive results. Thus, TRP channels are potential targets for managing cancer-related pain syndromes.


Subject(s)
Cancer Pain/drug therapy , Cancer Pain/physiopathology , Transient Receptor Potential Channels/metabolism , Animals , Clinical Trials as Topic , Humans , Pain Management , TRPA1 Cation Channel/agonists , TRPA1 Cation Channel/antagonists & inhibitors , TRPA1 Cation Channel/metabolism , TRPV Cation Channels/agonists , TRPV Cation Channels/antagonists & inhibitors , TRPV Cation Channels/metabolism , Transient Receptor Potential Channels/agonists , Transient Receptor Potential Channels/antagonists & inhibitors , Transient Receptor Potential Channels/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...