Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Oral Biol ; 84: 89-93, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28965044

ABSTRACT

OBJECTIVE: To evaluate the cytotoxicity, genotoxicity and antibacterial activity of poly(vinyl alcohol)-coated silver nanoparticles (AgNPs-PVA) and farnesol (FAR). DESIGN: The cytotoxicity (% of cell viability) was evaluated by MTT assay and the genotoxicity (% of DNA in the tail) was evaluated by Comet assay. Root canal disinfection with different irrigating protocols was evaluated ex vivo in human teeth contaminated with Enterococcus faecalis for 21days. Three microbiological samples were collected: initial (after contamination); post-irrigation (after irrigation); and final (after 7days). After each sample, the number of log 10 CFU mL-1 was determined. Statistical analyses was performed using two-way ANOVA and Bonferroni post-hoc tests for MTT assay, Kruskal-Wallis and Dunn post-hoc tests for Cometa and antibacterial assays (α=0.05). RESULTS: The MTT assay showed that AgNPs and FAR were less cytotoxic that sodium hypochlorite (NaOCl) and showed a lower% of DNA in the tail, in comparison with H2O2 (positive control - C+). In the post-irrigation microbiological sample, all the irrigating protocols were more effective than C+ (without irrigation). NaOCl/saline, NaOCl/saline/AgNPs-PVA and NaOCl/saline/FAR led to complete bacterial elimination (p >0.05). In comparison with the initial sample, both the post-irrigation and the final samples showed microbial reduction (p < 0.05). CONCLUSIONS: AgNPs-PVA and FAR showed low cytotoxicity and genotoxicity, and exhibit potential for use as a final endodontic irrigation protocols.


Subject(s)
Anti-Bacterial Agents/pharmacology , Coated Materials, Biocompatible/pharmacology , Enterococcus faecalis/drug effects , Farnesol/pharmacology , Metal Nanoparticles , Polyvinyl Alcohol/pharmacology , Root Canal Irrigants/pharmacology , Silver/pharmacology , Cell Survival/drug effects , Cells, Cultured , Colony Count, Microbial , Comet Assay , Disinfection , Fibroblasts/drug effects , Humans , In Vitro Techniques , Mutagenicity Tests , Sodium Hypochlorite/pharmacology
2.
ACS Appl Mater Interfaces ; 8(39): 26066-26072, 2016 Oct 05.
Article in English | MEDLINE | ID: mdl-27610828

ABSTRACT

A detailed study of the structural, surface, and gas-sensing properties of nanostructured CoxZn1-xO films is presented. X-ray diffraction (XRD) analysis revealed a decrease in the crystallization degree with increasing Co content. The X-ray absorption near-edge structure (XANES) and X-ray photoelectron spectroscopies (XPS) revealed that the Co2+ ions preferentially occupied the Zn2+ sites and that the oxygen vacancy concentration increased as the amount of cobalt increased. Electrical measurements showed that the Co dopants not only enhanced the sensor response at low ozone levels (ca. 42 ppb) but also led to a decrease in the operating temperature and improved selectivity. The enhancement in the gas-sensing properties was attributed to the presence of oxygen vacancies, which facilitated ozone adsorption.

3.
Microsc Res Tech ; 75(6): 758-65, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22213178

ABSTRACT

The purpose of this study was to compare the inorganic content and morphology of one nanofilled and one nanohybrid composite with one universal microhybrid composite. The Vickers hardness, degree of conversion and scanning electron microscope of the materials light-cured using LED unit were also investigated. One nanofilled (Filtek™ Supreme XT), one nanohybrid (TPH®(3)) and one universal microhybrid (Filtek™ Z-250) composite resins at color A(2) were used in this study. The samples were made in a metallic mould (4 mm in diameter and 2 mm in thickness). Their filler weight content was measured by thermogravimetric analysis (TG). The morphology of the filler particles was determined using scanning electron microscope equipped with a field emission gun (SEM-FEG). Vickers hardness and degree of conversion using FT-IR spectroscopy were measured. Filtek™ Z-250 (microhybrid) composite resin shows higher degree of conversion and hardness than those of Filtek™ Supreme XT (nanofilled) and TPH®(3) (nanohybrid) composites, respectively. The TPH(3)® (nanohybrid) composite exhibits by far the lowest mechanical property. Nanofilled composite resins show mechanical properties at least as good as those of universal hybrids and could thus be used for the same clinical indications as well as for anterior restorations due to their high aesthetic properties.


Subject(s)
Composite Resins/chemistry , Inorganic Chemicals/analysis , Nanostructures/analysis , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...