Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Vet Ital ; 59(2)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38376834

ABSTRACT

Ivermectin is a medication used to treat parasite infestations in humans and in veterinary medicine. Previously we showed that therapeutical doses of ivermectin impaired spermatogenesis and spermiogenesis in adult rats. The present study was proposed to understand the pathophysiological mechanism that triggered these impairments induced by ivermectin. It was a particular objective to study if ivermectin induced excessive apoptosis. Adult rats were treated with a therapeutical dose of ivermectin (subcutaneously). Their testis was evaluated for the expression of caspase-3 (a marker of apoptosis), using immunohistochemistry techniques. Results revealed that ivermectin treatment increased the expression of caspase-3 (labeled seminiferous tubules and strongly labeled tubules), as well as increased the number of tubules that presented labeled cells in the tubular lumen, compared to the data of the control group. In conclusion, a therapeutical dose of ivermectin induced expressive apoptosis in cells of the seminiferous tubules of rats, affecting the testicular natural homeostasis process, which resulted in the spermatogenesis and spermiogenesis impairments previously reported.


Subject(s)
Ivermectin , Testis , Humans , Male , Animals , Rats , Caspase 3 , Ivermectin/toxicity , Apoptosis , Homeostasis
2.
Tissue Cell ; 86: 102292, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159533

ABSTRACT

Ivermectin is a popular antiparasitic drug used in veterinary and human medicine. Studies by our group have shown that therapeutic doses of ivermectin induce some brain and behavioral impairments, especially in the reproductive sphere. So far, the studies were focused in adulthood. Considering that juveniles are more susceptible to drugs during developmental stages and both farm/domestic animals and humans have been medicated with ivermectin in youth, it is necessary to evaluate the possible harm effects in youth. The stress variable is also important, as it potentially influences the effects produced by ivermectin. Therefore, the objective of this study was to evaluate morphofunctional and hormonal reproductive aspects of juvenile rats exposed to ivermectin and/or stressed. Prepubertal male rats were treated with 0.2 or 1.0 mg/kg of ivermectin (a therapeutic dose and a higher dose, respectively). Rats were also submitted to a restraint stress session. The testis morphology and histology were analyzed and plasma testosterone levels were measured. The two doses of ivermectin did not induce a biologically relevant effect on testis and testosterone levels of rats. However, restraint stress impaired macroscopic and microscopic morphometric and stereological parameters, as well as the histology of the testis: it increased the relative testis weight, the tubular diameter, the tubular luminal diameter, and the tubular cellular index, and injured the interstitial area. Previous treatment of juvenile rats with ivermectin prevented most of the stress-induced testes injuries. In conclusion, in addition to be a remarkable antiparasitic agent, ivermectin prevented stress-induced testes injuries in juvenile rats.


Subject(s)
Ivermectin , Testis , Humans , Rats , Male , Animals , Adolescent , Ivermectin/pharmacology , Testosterone/pharmacology
3.
Behav Brain Res ; 443: 114329, 2023 04 12.
Article in English | MEDLINE | ID: mdl-36746310

ABSTRACT

BACKGROUND: The tremor mutant mice present motor impairments comprised of whole-body tremors, ataxia, decreased exploratory behavior, and audiogenic seizures. OBJECTIVES: This study aims to investigate the development of motor dysfunction in this mutant mouse and the relationships with cortical, striatal, and cerebellar levels of GABA, glutamate, glycine, dopamine (DA), serotonin (5-HT), noradrenaline (NOR), and its metabolites. The serum cytokines levels, myelin content, and the astrocytic expression of the glial fibrillary acidic protein (GFAP) investigated the possible influence of inflammation in motor dysfunction. RESULTS: Relative to wild-type (WT) mice, the tremor mice presented: increased tremors and bradykinesia associated with postural instability, decreased range of motion, and difficulty in initiating voluntary movements directly proportional to age; reduced step length for right and left hindlimbs; reduced cortical GABA, glutamate and, aspartate levels, the DOPAC/DA and ratio and increased the NOR levels; in the striatum, the levels of glycine and aspartate were reduced while the HVA levels, the HVA/DA and 5HIAA/5-HT ratios increased; in the cerebellum the glycine, NOR and 5-HIAA levels increased. CONCLUSIONS: We suggest that the motor disturbances resulted mainly from the activation of the indirect striatal inhibitory pathway to the frontal cortex mediated by GABA, glutamate, and aspartate, reducing the dopaminergic activity at the prefrontal cortex, which was associated with the progressive tremor. The reduced striatal and increased cerebellar glycine levels could be partially responsible for the mutant tremor motor disturbances.


Subject(s)
Motor Disorders , Tremor , Mice , Animals , Tremor/metabolism , Serotonin/metabolism , Aspartic Acid/metabolism , Seizures/metabolism , Dopamine/metabolism , Glutamic Acid/metabolism , Corpus Striatum/metabolism , Norepinephrine/metabolism , Neurotransmitter Agents/metabolism , gamma-Aminobutyric Acid/metabolism , Glycine/metabolism
4.
J Neurosci Res ; 100(7): 1438-1451, 2022 07.
Article in English | MEDLINE | ID: mdl-35362120

ABSTRACT

The recessive mutant mouse bate palmas (bapa) arose from N-ethyl-N-nitrosourea mutagenesis. Previous studies of our group revealed some behavioral impairments and a mutation in the lysine (K)-specific methyltransferase 2D (Kmt2d) gene. Because mutations in the KMT2D gene in humans are mainly responsible for Kabuki syndrome, this study was proposed to validate bapa mice as a model of Kabuki syndrome. Besides other symptoms, Kabuki syndrome is characterized by increased susceptibility to infections and speech impairments, usually diagnosed in the early childhood. Thus, juvenile male and female bapa mice were studied in different developmental stages (prepubertal period and puberty). To induce sickness behavior and to study infection susceptibility responses, lipopolysaccharide (LPS) was used. To study oral communication, ultrasonic vocalizations were evaluated. Behavioral (open-field test) and central (astrocytic glial fibrillary acidic protein [GFAP] and tyrosine hydroxylase [TH]) evaluations were also performed. Control and bapa female mice emitted 31-kHz ultrasounds on prepubertal period when exploring a novel environment, a frequency not yet described for mice, being defined as 31-kHz exploratory vocalizations. Males, LPS, and puberty inhibited these vocalizations. Bapa mice presented increased motor/exploratory behaviors on prepubertal period due to increased striatal TH expression, revealing striatal dopaminergic system hyperactivity. Combining open-field behavior and GFAP expression, bapa mice did not develop LPS tolerance, that is, they remained expressing signs of sickness behavior after LPS challenge, being more susceptible to infectious/inflammatory processes. It was concluded that bapa mice is a robust experimental model of Kabuki syndrome.


Subject(s)
Abnormalities, Multiple , Hematologic Diseases , Vestibular Diseases , Abnormalities, Multiple/genetics , Animals , Child, Preschool , Face/abnormalities , Female , Hematologic Diseases/genetics , Humans , Lipopolysaccharides/pharmacology , Male , Mice , Vestibular Diseases/genetics
5.
J Am Assoc Lab Anim Sci ; 61(3): 270-274, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35101160

ABSTRACT

Several analgesics are suggested for pain management in mice. Nonsteroidal antiinflammatories (NSAIDs), such as meloxicam can be administered for the treatment of inflammation and acute pain; however, several side effects can occur which include gastrointestinal ulceration and renal and hepatic toxicity. We previously performed a pilot study to test the antinociceptive activity of meloxicam in mice, but we observed behavioral changes in unoperated control mice. These observations spurred further investigation. One hypothesis for the result was potential differences in formulation between commercial brands of meloxicam. Thus, this current study aimed to evaluate the effects of 3 different commercial brands of meloxicam (20 mg/kg) in the general activity of mice using the open field test. Our results showed that meloxicam had several effects on mouse behavior and caused the formation of skin lesions at the injection site, depending on the brand of the drug. The most significant adverse effect observed was decreased exploratory activity. Grooming frequency was reduced in all groups. These adverse effects might be related to the quality of the drugs because meloxicam formulations can contain crystal polymorphisms that affect drug quality and efficacy. This study points out the importance of drug quality variation that can affect the outcome of behavioral studies in mice.


Subject(s)
Open Field Test , Thiazines , Analgesics/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal , Meloxicam/therapeutic use , Mice , Pilot Projects
6.
Arch Endocrinol Metab ; 65(5): 537-548, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34714995

ABSTRACT

OBJECTIVE: Obesity is characterized by a state of chronic, low-intensity systemic inflammation frequently associated with insulin resistance and dyslipidemia. METHODS: Given that chronic inflammation has been implicated in the pathogenesis of mood disorders, we investigated if chronic obesity that was initiated early in life - lasting through adulthood - could be more harmful to memory impairment and mood fluctuations such as depression. RESULTS: Here we show that pre-pubertal male rats (30 days old) treated with a high-fat diet (40%) for 8-months gained ~50% more weight when compared to controls, exhibited depression and anxiety-like behaviors but no memory impairment. The prefrontal cortex of the obese rats exhibited an increase in the expression of genes related to inflammatory response, such as NFKb, MMP9, CCl2, PPARb, and PPARg. There were no alterations in genes known to be related to depression. CONCLUSION: Long-lasting obesity with onset in prepuberal age led to depression and neuroinflammation but not to memory impairment.


Subject(s)
Behavior, Animal , Depression , Animals , Anxiety , Depression/etiology , Diet, High-Fat/adverse effects , Male , Obesity , Rats
7.
J Ethnopharmacol ; 275: 113867, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33892067

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The tea made with the fruits of Luffa operculata (L.) Cogn. (Cucurbitaceae; EBN) is popularly used as abortive. AIM OF THE STUDY: The present work aimed at accessing how the exposition of female Wistar rats to 1.0 mg/kg of EBN (experimental group, EG), or distilled water (control group, CG), by gavage, at gestational days (GD) 17-21 interfered with the reproductive performance, and with dams' behavior after weaning. MATERIALS AND METHODS: At post-natal day 2 (PND2), the number of male and female pups was evaluated, as well as their weight. After weaning (PND21), dams were euthanized, and their liver and kidneys were removed for histological and biochemical analyses, while the blood was used in the evaluation of cytokines IL-1α, IL-1ß, IL-6 and TNF-α, corticosterone, adrenocorticotrophic hormone, melatonin, AST, ALT and creatinine levels. RESULTS AND DISCUSSION: Dams that were treated with EBN showed an anxiety-like behavior, weight loss at the end of gestation and weight gain at weaning, accompanied with a significant decrease in pro-inflammatory cytokines and in the melatonin level. No significant histological or biochemical alterations have occurred in the liver or kidneys. The number of female pups was significantly higher in the EG. The male pups showed weight gain at PND60. CONCLUSION: The presence of cucurbitacins is probably involved in the dysregulations that were found, due to their polycyclic steroid triterpene structure.


Subject(s)
Cytokines/blood , Luffa/chemistry , Melatonin/blood , Plant Extracts/pharmacology , Administration, Oral , Adrenocorticotropic Hormone/blood , Animals , Animals, Newborn , Behavior, Animal/drug effects , Body Weight/drug effects , Corticosterone/blood , Cucurbitacins/chemistry , Cucurbitacins/pharmacology , Cucurbitacins/toxicity , Female , Fruit/chemistry , Hormones/blood , Kidney/drug effects , Kidney/pathology , Liver/drug effects , Male , Maternal Exposure , Plant Extracts/administration & dosage , Plant Extracts/toxicity , Pregnancy , Prenatal Exposure Delayed Effects , Rats, Wistar , Reproduction/drug effects , Sex Characteristics
8.
J Ethnopharmacol ; 264: 113265, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-32858198

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Luffa operculata (L.) Cogn (Cucurbitaceae) is a traditional plant popularly used in the abortion induction, against sinusitis and is toxic. AIM OF THE STUDY: To verify the influence of the aqueous extract obtained from the dry fruit of L. operculata (BNE) on the male rats vertically exposed to a subabortive dose of BNE, by evaluating alterations in behavior and neurochemical features in hypothalamus, striatum and frontal cortex, at a juvenile age, after receiving a stress challenge given by the use of the "New York subway stress" technique (NYS). MATERIALS AND METHODS: Pregnant female rats (F0 generation) received 1.0 mg/kg BNE, or distilled water (100 mL/kg), by gavage, between gestation days GD17 and GD21. The pups were weaned at PND21 and were kept up to PND60 (juvenile age) in controlled environmental conditions. Four groups were obtained: control (CG), experimental (EG), stress control (SCG) and stress experimental (SEG) After being stressed, the animals were behavioral screened for in the open field (OF) and in light-dark box (LDB) apparatuses. They were euthanized, and the liver, kidneys and brain were removed for both macroscopic and microscopic analyses, and for quantification of vanillylmandelic acid (VMA), norepinephrine (NE), dopamine (DA) and its metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC) and the serotonin (5-HT) and its metabolite 5-hydroxyindolylacetic acid (5-HIAA) were accessed in the hypothalamus, frontal cortex and striatum. RESULTS AND DISCUSSION: although most of the behavior changes were due to the stress challenge, the rats spent more time in the dark side of the LDB and were less likely to explore the light side, indicating that the treatment with BNE induced to fear. Interferences of BNE over behavior were due to impairment of VMA, NE, 5-HT and DA and increasing of DOPAC in the hypothalamus, and an increase of 5-HIAA in the frontal cortex, indicating alterations in the hypothalamic-hypophysis-adrenal axis (HHAA). No macroscopic or histopathological changes were observed in the liver, kidneys, or brain, although GFAP was diminished in the SCG, as expected for stressed rats. CONCLUSION: the vertical exposition of juvenile rats to BNE led to the manifestation of fear and to a down regulation of the hypothalamic-hypophysis-adrenal axis.


Subject(s)
Fear/drug effects , Hypothalamus/drug effects , Hypothalamus/metabolism , Luffa , Neurotransmitter Agents/metabolism , Plant Extracts/administration & dosage , Prenatal Exposure Delayed Effects/metabolism , Age Factors , Animals , Dopamine/metabolism , Fear/physiology , Fear/psychology , Female , Hydroxyindoleacetic Acid/metabolism , Male , Plant Extracts/isolation & purification , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/psychology , Rats , Rats, Wistar , Serotonin/metabolism
9.
Arch. endocrinol. metab. (Online) ; 65(5): 537-548, 2021. graf
Article in English | LILACS | ID: biblio-1345195

ABSTRACT

ABSTRACT Objective: Obesity is characterized by a state of chronic, low-intensity systemic inflammation frequently associated with insulin resistance and dyslipidemia. Materials and methods: Given that chronic inflammation has been implicated in the pathogenesis of mood disorders, we investigated if chronic obesity that was initiated early in life - lasting through adulthood - could be more harmful to memory impairment and mood fluctuations such as depression. Results: Here we show that pre-pubertal male rats (30 days old) treated with a high-fat diet (40%) for 8-months gained ~50% more weight when compared to controls, exhibited depression and anxiety-like behaviors but no memory impairment. The prefrontal cortex of the obese rats exhibited an increase in the expression of genes related to inflammatory response, such as NFKb, MMP9, CCl2, PPARb, and PPARg. There were no alterations in genes known to be related to depression. Conclusion: Long-lasting obesity with onset in prepuberal age led to depression and neuroinflammation but not to memory impairment.


Subject(s)
Animals , Male , Rats , Behavior, Animal , Depression/etiology , Anxiety , Diet, High-Fat/adverse effects , Obesity
10.
Bio Protoc ; 10(7): e3568, 2020 Apr 05.
Article in English | MEDLINE | ID: mdl-33659538

ABSTRACT

Despite the great number of test batteries already known to assess the behavior of genetically modified and inbred strains of mice, only a few of them focus on basic neurological parameters. The purpose of the battery test proposed is to settle a specific methodology to characterize the phenotype of neurological disease models in mutant or genetically modified mice. This methodology is simple and efficient in order to analyze several parameters, including general activity, sensory nervous system, sensorimotor system, central nervous system and autonomous nervous system. This can aid the choice of specific additional tests as well as the determination of an interrelationship among phenotypic alterations observed. Although being efficient for a first analysis of a mouse model, interpretation of the results must be carefully made because phenotype manifestation may vary due to many parameters, including mouse strain, environmental and housing condition, animal-experimenter interaction, sample size and tests order. It is important to consider as a critical point if handling procedures are aversive. The results acquired with the analysis of 18 parameters together provide preliminary data to characterize mouse phenotype and helps selecting more specific tests.

11.
Vet Res Commun ; 43(4): 239-247, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31760569

ABSTRACT

Sickness behavior (SB) is considered part of the adaptive behavioral and neuroimmune changes that occur in response to inflammatory processes. However, SB is a motivational state modulated by the environmental context. The objective of this study was to evaluate if selenium could ameliorate symptoms of SB and if stress would affect these responses. We induced SB in rats using lipopolysaccharide (LPS). We choose selenium based on our findings of LPS-exposure decreasing selenium levels in rats. We exposed these rats to a psychogenic stress and studied motivational modulation paradigms, such as cure of the organism, preservation of the species, and fight or flight. We studied ultrasonic vocalizations, open-field behaviors, body weight, and IL-1 beta and IFN-gamma serum levels. LPS-induced SB was evidenced by decreased motor/exploratory activity and increased proinflammatory mediators' levels. Selenium treatment did not exert beneficial effects on SB, revealing that probably the selenium deficiency was not related to SB. When analyzed with the stress paradigm, the behavior of rats was differentially affected. LPS did not affect behavior in the presence of stress. SB was abrogated during stressor events to prioritize survival behaviors, such as fight-or-flight. Contrarily, the association of LPS, selenium, and stress induced SB even during stressor events, revealing that this combination induced a cumulative toxic effect.


Subject(s)
Behavior, Animal/drug effects , Behavior, Animal/physiology , Illness Behavior/drug effects , Stress, Psychological/psychology , Animals , Lipopolysaccharides/toxicity , Rats , Selenium/pharmacology
12.
Biol Open ; 8(5)2019 May 13.
Article in English | MEDLINE | ID: mdl-31036753

ABSTRACT

We have shown that exposure of rats to lipopolysaccharide (LPS) during gestation induces autistic-like behaviors in juvenile offspring and pioglitazone post treatment corrects social and communication deficits. The first objective of the present study was to evaluate the cognition of the rats, because this is also a behavioral sphere committed in autism. Second, biomarkers related to pioglitazone pathways and autism were studied to try to understand their mechanisms. We used our rat model of autism and pioglitazone was administered daily to these young offspring. T-maze spontaneous alternations tests, plasma levels of brain-derived neurotrophic factor (BDNF), beta-endorphin, neurotensin, oxytocin, and substance P were all studied. Exposure of rats to LPS during gestation induced cognitive deficits in the young offspring, elevated BDNF levels and decreased neurotensin levels. Daily postnatal pioglitazone treatment abolished cognition impairments as well as BDNF and neurotensin disturbances. Together with our previous studies, we suggest pioglitazone as a candidate for the treatment of autism, because it improved the responses of the three most typical autistic-like behaviors. BDNF and neurotensin also appeared to be related to the autistic-like behaviors and should be considered for therapeutic purposes.

13.
Res Vet Sci ; 124: 149-157, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30901667

ABSTRACT

Ivermectin is a human and veterinary antiparasitic drug which is one of the most widely used in the world. Studies from our group have revealed several behavioral and neurochemical impairments induced by therapeutic doses of ivermectin in adult rats. However, the effects on juveniles remain unknown. Ivermectin has been prescribed for juvenile humans, pets and farm animals, which still show remarkable development and postnatal maturation and may be more susceptible to drug interventions. Hence, we studied the behavioral and neurochemical effects of two therapeutical doses (0.2 and 1.0 mg/kg) of ivermectin in juvenile rats. As it is underestimated in prescriptions, the stress factor was also studied. Ivermectin 1.0 mg/kg induced hyperlocomotion in juvenile rats. Association of 1.0 mg/kg ivermectin with stress induced hypolocomotion in rats. Ivermectin 1.0 mg/kg whether or not associated with stress exacerbated socialization of rats. Ivermectin did not induce anxiety-like behavior neither affected corticosterone levels of juvenile rats. The motor/exploratory behavioral findings induced by association of ivermectin and stress seem to be triggered after the increase in the striatal serotonergic system activity. Association of ivermectin with stress increased striatal dopamine levels, which increased (excessive) social play behavior. Our results suggest a review of the prescribed dose of ivermectin for juvenile humans and pets. Moreover, the stress factor should be considered for ivermectin medical prescriptions, since it may exacerbate behavioral and neurochemical disturbances.


Subject(s)
Antiparasitic Agents/toxicity , Ivermectin/toxicity , Motor Activity/drug effects , Social Behavior , Animals , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/physiology , Male , Rats , Rats, Wistar , Serotonergic Neurons/drug effects , Serotonergic Neurons/physiology , Stress, Physiological/drug effects
14.
Genes Brain Behav ; 18(8): e12568, 2019 11.
Article in English | MEDLINE | ID: mdl-30891914

ABSTRACT

The recessive mutant mice bate palmas (bapa) - claps in Portuguese arose from N-ethyl-N-nitrosourea mutagenesis. A single nucleotide, T > C, change in exon 13, leading to a Thr1289 Ala substitution, was identified in the lysine (K)-specific methyltransferase 2D gene (Kmt2d) located on chromosome 15. Mutations with a loss-of-function in the KMT2D gene on chromosome 12 in humans are responsible for Kabuki syndrome (KS). Phenotypic characterization of the bapa mutant was performed using a behavioral test battery to evaluate the parameters related to general activity, the sensory nervous system, the psychomotor system, and the autonomous nervous system, as well as to measure motor function and spatial memory. Relative to BALB/cJ mice, the bapa mutant showed sensory and psychomotor impairments, such as hypotonia denoted by a surface righting reflex impairment and hindquarter fall, and a reduction in the auricular reflex, suggesting hearing impairment. Additionally, the enhanced general activity showed by the increased rearing and grooming frequency, distance traveled and average speed possibly presupposes the presence of hyperactivity of bapa mice compared with the control group. A slight motor coordination dysfunction was showed in bapa mice, which had a longer crossing time on the balance beam compared with BALB/cJ controls. Male bapa mice also showed spatial gait pattern changes, such as a shorter stride length and shorter step length. In conclusion, the bapa mouse may be a valuable animal model to study the mechanisms involved in psychomotor and behavior impairments, such as hypotonia, fine motor coordination and hyperactivity linked to the Kmt2d mutation.


Subject(s)
Abnormalities, Multiple/genetics , Behavior, Animal , Face/abnormalities , Hematologic Diseases/genetics , Histone-Lysine N-Methyltransferase/genetics , Loss of Function Mutation , Myeloid-Lymphoid Leukemia Protein/genetics , Vestibular Diseases/genetics , Abnormalities, Multiple/physiopathology , Animals , Disease Models, Animal , Face/physiopathology , Gait , Hearing , Hematologic Diseases/physiopathology , Male , Mice , Mice, Inbred BALB C , Movement , Muscle Hypotonia/genetics , Reflex , Vestibular Diseases/physiopathology
15.
Ecotoxicol Environ Saf ; 161: 364-373, 2018 10.
Article in English | MEDLINE | ID: mdl-29902616

ABSTRACT

The Billings reservoir is the largest water-storage facility in the São Paulo Metropolitan Region, with only a small part of the reservoir used for water supply. Recently, the São Paulo Metropolitan Region has experienced the greatest water collapse ever recorded. Thus, the intensification of use of the Billings reservoir should be considered. The objective of this study was to evaluate the quality of the water from different areas of the Billings reservoir related to human consumption (water supply and fishing): Rio Pequeno, Rio Grande, and Bororé rivers. We performed microbiological and physical studies on one water sample collected at each of these sites. Adult zebrafish were exposed to such water samples and their behaviors were evaluated. Finally, we studied central glial fibrillary acidic protein (GFAP) expression, which is related to neuroinflammatory processes. Water samples from Rio Pequeno, Rio Grande, and Bororé presented microbiological contamination for Escherichia coli and heterotrophic bacteria. Water from the Rio Pequeno river induced both motor/exploratory impairments and anxiogenic-like behavior in zebrafish. Water from the Bororé river induced behaviors in zebrafish related to respiratory impairments (hypoxia) as well as higher alarm reaction. Zebrafish exposed to water from the Bororé also presented astrogliosis, which seems to have happened in detrimental of the high heterotrophic bacterial contamination. Rio Grande and Bororé water increased the lethality rates. Considering the present results of microbiological contaminants and behavior impairments, lethality, as well as astrogliosis in zebrafish, the water from Rio Pequeno, Rio Grande, and Bororé rivers should be considered unacceptable for human use in their untreated state. The Basic Sanitation Company of the State of Sao Paulo should consider adopting rigorous processes of microbiological water treatment. Authorization for fishing at Bororé river should be reconsidered.


Subject(s)
Behavior, Animal/drug effects , Glial Fibrillary Acidic Protein/metabolism , Rivers/microbiology , Water Microbiology , Water Supply/statistics & numerical data , Animals , Brazil , Environmental Monitoring , Humans , Water , Zebrafish
16.
PLoS One ; 13(5): e0197060, 2018.
Article in English | MEDLINE | ID: mdl-29791472

ABSTRACT

Autism is characterized by social deficits, communication abnormalities, and repetitive behaviors. The risk factors appear to include genetic and environmental conditions, such as prenatal infections and maternal dietary factors. Previous investigations by our group have demonstrated that prenatal exposure to lipopolysaccharide (LPS), which mimics infections by gram-negative bacteria, induces autistic-like behaviors. No effective treatment yet exists for autism. Therefore, we used our rat model to test a possible treatment for autism. We selected pioglitazone to block or ease the impairments induced by LPS because although this drug was designed as an anti-diabetic drug (it has an insulin effect), it also exerts anti-inflammatory effects. Juvenile offspring were treated daily with pioglitazone, and the main behaviors related to autism, namely, socialization (play behavior) and communication (50-kHz ultrasonic vocalizations), were studied. Biomarkers linked to autism and/or pioglitazone were also studied to attempt to understand the mechanisms involved, namely, IL-6, TNF-alpha, MCP-1, insulin, and leptin. Prenatal LPS exposure induced social deficits and communicational abnormalities in juvenile rat offspring as well as elevated plasma IL-6 levels. Daily postnatal pioglitazone treatment blocked the impairments found in terms of the time spent on social interaction, the number of vocalizations (i.e., autistic-like behaviors) and the elevated plasma IL-6 levels. Thus, pioglitazone appears to be a relevant candidate for the treatment of autism. The present findings may contribute to a better understanding and treatment of autism and associated diseases.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Autistic Disorder/drug therapy , Thiazolidinediones/pharmacology , Animals , Anti-Inflammatory Agents/therapeutic use , Autistic Disorder/immunology , Drug Evaluation, Preclinical , Female , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Male , Pioglitazone , Rats, Wistar , Signal Transduction , Thiazolidinediones/therapeutic use , Vocalization, Animal
17.
J Ethnopharmacol ; 222: 52-60, 2018 Aug 10.
Article in English | MEDLINE | ID: mdl-29727732

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Luffa operculata (L.) Cogn., Cucurbitaceae (buchinha-do-norte), aqueous extract (EBN) is popularly used to relieve symptoms of sinusitis and as abortive. AIM OF THE STUDY: As neurotoxicity and toxicity studies on the male reproductive system are scarce, the present study aimed at quantitatively addressing the question. MATERIALS AND METHODS: Male adult rats were observed in the open field (OF) and in the light-dark box test (LDB) to evaluate locomotion and anxiety. Macroscopical and microscopical alterations on the rats' testes were also studied. The rats were divided into two groups, control (GC) and experimental (GE). GE received 1.0 mg/kg per day of EBN, orally, for five consecutive days, whereas GC received water. On the 6th day, each animal was evaluated in OF and in LDB for 3 min in each apparatus. After that, the left testicles were studied. RESULTS: In the OF, GE showed decreased locomotion, increased immobility time and decreased grooming and remained for less time in the center of the apparatus. In LDB, GE showed significant difficulty in moving into the light side of the device and remained longer in the dark side, exhibiting less displacement on both sides and less transitions between sides. Testicle weights, relative weights, testicular volume, cranial-caudal and lateral-lateral axes presented an increase in relation to the GC. Microscopic changes were observed in parenchyma, lumen and diameter of seminiferous tubules. Leydig cell numbers were decreased in GE. CONCLUSIONS: The administration of EBN induced anxiety-like behavior, impaired locomotion and altered the testes morphology of rats.


Subject(s)
Anxiety/chemically induced , Luffa , Motor Activity/drug effects , Plant Extracts/toxicity , Testis/drug effects , Administration, Oral , Animals , Behavior, Animal/drug effects , Fruit , Male , Rats, Wistar , Testis/pathology
18.
Behav Brain Res ; 331: 25-29, 2017 07 28.
Article in English | MEDLINE | ID: mdl-28526515

ABSTRACT

Previous investigations by our group have shown that prenatal exposure to lipopolysaccharide (LPS), which mimics infection by gram-negative bacteria, induces social, cognitive, and communication deficits. For a complete screening of autistic-like behaviors, the objective of this study was to evaluate if our rat model also induces restricted and repetitive stereotyped behaviors. Thus, we studied the self-grooming microstructure. We also studied the neurochemistry of hypothalamus and frontal cortex, which are brain areas related to autism to better understand central mechanisms involved in our model. Prenatal LPS exposure on gestational day 9.5 increased the head washing episodes (frequency and time), as well as the total self-grooming. However, body grooming, paw/leg licking, tail/genital grooming, and circling behavior/tail chasing did not vary significantly among the groups. Moreover, prenatal LPS induced dopaminergic hypoactivity (HVA metabolite and turnover) in the hypothalamus. Therefore, our rat model induced restricted and repetitive stereotyped behaviors and the other main symptoms of autism experimentally studied in rodent models and also found in patients. The hypothalamic dopaminergic impairments seem to be associated with the autistic-like behaviors.


Subject(s)
Behavior, Animal/drug effects , Grooming/drug effects , Hypothalamus/drug effects , Lipopolysaccharides/pharmacology , Animals , Autistic Disorder/psychology , Disease Models, Animal , Female , Hypothalamus/metabolism , Pregnancy , Prenatal Exposure Delayed Effects , Rats, Wistar , Social Behavior , Stereotypic Movement Disorder/drug therapy , Stereotypic Movement Disorder/psychology
19.
PLoS One ; 12(1): e0169446, 2017.
Article in English | MEDLINE | ID: mdl-28056040

ABSTRACT

Recent studies have demonstrated the intimate relationship between depression and immune disturbances. Aware of the efficacy limits of existing antidepressant drugs and the potential anti-inflammatory properties of propentofylline, we sought to evaluate the use of propentofylline as a depression treatment. We used a rat model of depression induced by repetitive lipopolysaccharide (LPS) administrations. We have studied sickness behavior, by assessing daily body weight, open field behavior, and TNF-α plasmatic levels. Anxiety-like behavior (light-dark test), depressive-like behavior (forced swim test), plasmatic levels of the brain-derived neurotrophic factor (BDNF, depression biomarker), and central glial fibrillary acidic protein (GFAP) expression (an astrocyte biomarker) were also evaluated. LPS induced body weight loss, open field behavior impairments (decreased locomotion and rearing, and increased immobility), and increased TNF-α levels in rats, compared with control group. Thus, LPS induced sickness behavior. LPS also increased the immobility and reduced climbing in the forced swim test, when compared with the control group, i.e., LPS induced depressive-like behavior in rats. Propentofylline prevented sickness behavior after four days of consecutive treatment, as well as prevented the depressive-like behavior after five days of consecutive treatments. Propentofylline also prevented the increase in GFAP expression induced by LPS. Neither LPS nor propentofylline has influenced the anxiety and BDNF levels of rats. In conclusion, repetitive LPS administrations induced sickness behavior and depressive-like behavior in rats. Propentofylline prevented both sickness behavior and depressive-like behavior via neuroinflammatory pathway. The present findings may contribute to a better understanding and treatment of depression and associated diseases.


Subject(s)
Depression/drug therapy , Lipopolysaccharides/toxicity , Xanthines/therapeutic use , Animals , Antidepressive Agents , Anxiety/drug therapy , Behavior, Animal/drug effects , Body Weight/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Depressive Disorder/drug therapy , Disease Models, Animal , Glial Fibrillary Acidic Protein/metabolism , Illness Behavior/drug effects , Immunohistochemistry , Male , Photomicrography , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism
20.
Rev. bras. farmacogn ; 26(2): 216-224, Jan.-Apr. 2016. graf
Article in English | LILACS | ID: lil-779005

ABSTRACT

ABSTRACT Laetia suaveolens (Poepp.) Benth., Salicaceae, popularly known as "casinga-cheirosa", "caferana", or "laranjinha", is native to Brazil but not endemic to this country. A crude organic extract was obtained from the leaves and stem and intraperitoneally administered in male Balb-c mice. Its behavioral effects were evaluated in the open field and elevated plus maze in a two-stage experiment that assessed ten different parameters related to behavior as locomotion, emotionality, and anxiety. In the first stage of the experiment, intraperitoneal the crude organic extract administration dose-dependently impaired locomotion and emotionality 30–120 min after administration. A significant decrease in defecation was observed, which was related to emotionality. No alterations in the elevated plus maze were found; thus, this apparatus was not used in the next stage of the experiment. In the second stage, the previously determined non-lethal dose of 0.1563 g/kg was intraperitoneally administered, which impaired locomotion and rearing frequency and increased immobility time. Necropsy revealed smooth intestine hemorrhage. Rutin, leucoside, nicotiflorin, guaijaverin, and astragalin were isolated from the crude organic extract. This is the first time that these compounds have been identified in L. suaveolens. In conclusion, the crude organic extract impaired locomotion and emotionality and caused hemorrhage in male Balb-c mice, indicating that its consumption can be harmful to humans and animals. The present results provide a basis for further studies on the pharmacology, toxicology, and natural product chemistry of the crude organic extract.

SELECTION OF CITATIONS
SEARCH DETAIL
...