Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Environ Res ; 168: 105307, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33984550

ABSTRACT

Kelps are canopy-forming brown seaweed sustaining critical ecosystem services in coastal habitats, including shelter, nursery grounds, and providing food resources to a myriad of associated species. This study modeled the fundamental niche of Laminaria abyssalis along the Brazilian continental margin, an endemic species of the South Atlantic, to anticipate potential distributional range shifts under two contrasting scenarios of future environmental changes (RCP2.6 and RCP8.5). The model for fundamental niche predictions considering the "present scenario" has shown a wider potential area than the realized niche (i.e., the area where the species actually occurs) along the Brazilian coast. In both future scenarios, the models have shown niche erosion on the northern portion of the Brazilian coast and niche gains towards the south. In both scenarios, L. abyssalis populations tend to shift to deeper regions of the reef. The restricted range of occurrence (33,000 km2), intense anthropic activities along these beds (e.g., trawling fisheries, oil/gas mining, or removal for agricultural purposes) acting synergically with global warming, may drive this ecosystem to collapse faster than kelp species' ability to adapt. We propose to classify L. abyssalis as Endangered - (EN) under IUCN criteria, and highlight that long-term monitoring of kelp beds is an urgent need to develop effective conservation initiatives to protect such rare and invaluable ecosystem.


Subject(s)
Kelp , Brazil , Ecosystem , Fisheries , Global Warming
3.
R Soc Open Sci ; 1(3): 140294, 2014 Nov.
Article in English | MEDLINE | ID: mdl-26064564

ABSTRACT

The deep West Antarctic Peninsula (WAP) shelf is characterized by intense deposition of phytodetritus during spring/summer months, while very little food material reaches the seafloor during winter. The response of the shelf benthic megafauna to this highly variable food supply is still poorly understood. In order to characterize the deposition of phytodetritus and the megabenthic community response, we deployed a seafloor time-lapse camera at approximately 590 m depth on the mid WAP shelf west of Anvers Island for 15 months. Seafloor photographs were taken at intervals of 12 or 24 h nearly continuously from 9 December 1999 (austral winter) to 20 March 2001 (summer) and analysed for phytodetritus deposition and megafaunal dynamics. Seafloor images indicated a marked seasonal arrival of greenish phytodetritus, with large interannual and seasonal variability in the coverage of depositing phytodetrital particles. The surface-deposit-feeding elasipod holothurians Protelpidia murrayi and Peniagone vignoni dominated the epibenthic megafauna throughout the year, frequently constituting more than 80% of the megafaunal abundance, attaining total densities of up to 2.4 individuals m(-2). Elasipod abundances were significantly higher in summer than winter. During summer periods of high phytodetrital flux, Pr. murrayi produced faecal casts at higher rates, indicating intensified population-level feeding activity. In March-June 2000, faecal casts lasted longest, suggesting lower horizontal bioturbation activity during autumn-winter. Our data indicate that the Pr. murrayi population increases its feeding rates in response to increasing amounts and/or lability of organic matter on the sediment surface. Assuming that this species feeds on the top millimetre of the sediment, we estimate that, during periods of high phytodetrital flux, the Pr. murrayi population reworks one square metre of sediment surface in approximately 287 days. We suggest that Pr. murrayi is an important species for organic-carbon recycling on the deep WAP shelf, controlling the availability of deposited labile phytodetritus to the broader shelf benthic community.

4.
R Soc Open Sci ; 1(4): 140464, 2014 Dec.
Article in English | MEDLINE | ID: mdl-26068892

ABSTRACT

[This corrects the article DOI: 10.1098/rsos.140294.].

SELECTION OF CITATIONS
SEARCH DETAIL
...