Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 23(15)2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35897709

ABSTRACT

Herpes simplex virus type-1 (HSV-1) infection causes several disorders, and acyclovir is used as a reference compound. However, resistant strains are commonly observed. Herein, we investigate the effects of N-heterocyclic compounds (pyrazolopyridine derivatives), named ARA-04, ARA-05, and AM-57, on HSV-1 in vitro replication. We show that the 50% effective concentration (EC50) values of the compounds ARA-04, ARA-05, and AM-57 were 1.00 ± 0.10, 1.00 ± 0.05, and 0.70 ± 0.10 µM, respectively. These compounds presented high 50% cytotoxic concentration (CC50) values, which resulted in a selective index (SI) of 1000, 1000, and 857.1 for ARA-04, ARA-05, and AM-57, respectively. To gain insight into which step of the HSV-1 replication cycle these molecules would impair, we performed adsorption and penetration inhibition assays and time-of-addition experiments. Our results indicated that ARA-04 and ARA-05 affected viral adsorption, while AM-57 interfered with the virus replication during its α- and γ-phases and decreased ICP27 content during initial and late events of HSV-1 replication. In addition, we also observed that AM-57 caused a strong decrease in viral gD content, which was reinforced by in silico calculations that suggested AM-57 interacts preferentially with the viral complex between a general transcription factor and virion protein (TFIIBc-VP16). In contrast, ARA-04 and ARA-05 interact preferentially in the proteins responsible for the viral adsorption process (nectin-1 and glycoprotein). Thus, our results suggest that the 1H-pyrazolo[3,4-b]pyridine derivatives inhibit the HSV-1 replicative cycle with a novel mechanism of action, and its scaffold can be used as a template for the synthesis of promising new molecules with antiviral effects, including to reinforce the presented data herein for a limited number of molecules.


Subject(s)
Herpes Simplex , Herpesviridae Infections , Herpesvirus 1, Human , Acyclovir/pharmacology , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Chlorocebus aethiops , Herpes Simplex/drug therapy , Herpesviridae Infections/drug therapy , Herpesvirus 1, Human/physiology , Pyrazoles , Pyridines/pharmacology , Pyridines/therapeutic use , Vero Cells , Virus Replication
2.
Med Chem ; 18(6): 701-709, 2022.
Article in English | MEDLINE | ID: mdl-34784878

ABSTRACT

BACKGROUND: Tuberculosis (TB) is one of the top ten causes of death worldwide, while Chagas disease (CD) is the parasitic disease that kills the largest number of people in the Americas. TB is the leading cause of death for patients with AIDS; it kills 1.5 million people and causes 10 million new cases every year. The lack of newly developed chemotherapeutic agents and insufficient access to health care services for a diagnosis increase the incidence of multidrug-resistant TB (MDRTB) cases. Although CD was identified in 1909, the chronic stages of the disease still lack adequate treatment. OBJECTIVE: The purpose of this work was to design and synthesize two new series of 2-nitroimidazole 5a-e and imidazooxazoles 6a-e with 1H-1,2,3-triazolil nucleus and evaluate their activities against Tc and Mycobacterium tuberculosis (Mtb). METHODS: Two series of five compounds were synthesized in a 3 or 4-step route in moderated yields, and their structures were confirmed by NMR spectral data analyses. The in vitro antitrypanosomal evaluation of products was carried out in an intracellular model using L929 cell line infected with trypomastigotes and amastigote forms of Tc of ß-galactosidase-transfected Tulahuen strain. Their antimycobacterial activity was evaluated against Mtb strain H37Rv. RESULTS: In general, 2-nitroimidazolic derivatives proved to be more potent in regard to antitrypanocidal and antimycobacterial activity. The non-cytotoxic 2-nitroimidazole derivative 5b was the most promising with a half maximum inhibitory concentration of 3.2 µM against Tc and a minimum inhibitory concentration of 65.3 µM against Mtb. CONCLUSION: Our study reinforced the importance of 2-nitroimidazole and 1H-1,2,3-triazole nuclei in antimicrobial activity. In addition, derivative 5b proved to be the most promising, presenting important activity against Tc and Mtb and could be used as a starting point for the development of new agents against these diseases.


Subject(s)
Mycobacterium tuberculosis , Nitroimidazoles , Trypanosoma cruzi , Tuberculosis, Multidrug-Resistant , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Humans , Microbial Sensitivity Tests , Nitroimidazoles/pharmacology
3.
Bioorg Med Chem ; 25(21): 5891-5903, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28988624

ABSTRACT

The pyrazole nucleus is an aromatic azole heterocycle with two adjacent nitrogen atoms. Pyrazole derivatives have exhibited a broad spectrum of biological activities, and approved pyrazole-containing drugs include celecoxib, antipyrine, phenylbutazone, rimonabant, and dipyrone. Many research groups have synthesized and evaluated pyrazoles against several biological agents. This review examines recent publications relating the structures of pyrazoles with their corresponding biological activities.


Subject(s)
Pyrazoles/pharmacology , Analgesics/chemistry , Analgesics/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Pyrazoles/chemistry
4.
Arch Virol ; 162(6): 1577-1587, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28213871

ABSTRACT

Mayaro virus (MAYV) is an arthropod-borne virus and a member of the family Togaviridae, genus Alphavirus. Its infection leads to an acute illness accompanied by long-lasting arthralgia. To date, there are no antiviral drugs or vaccines against infection with MAYV and resources for the prevention or treatment of other alphaviruses are very limited. MAYV has served as a model to study the antiviral potential of several substances on alphavirus replication. In this work we evaluated the antiviral effect of seven new derivatives of thieno[2,3-b]pyridine against MAYV replication in a mammalian cell line. All derivatives were able to reduce viral production effectively at concentrations that were non-toxic for Vero cells. Molecular modeling assays predicted low toxicity risk and good oral bioavailability of the substances in humans. One of the molecules, selected for further study, demonstrated a strong anti-MAYV effect at early stages of replication, as it protected pre-treated cells and also during the late stages, affecting virus morphogenesis. This study is the first to demonstrate the antiviral effect of thienopyridine derivatives on MAYV replication in vitro, suggesting the potential application of these substances as antiviral molecules against alphaviruses. Additional in vivo research will be needed to expand the putative therapeutic applications.


Subject(s)
Alphavirus/drug effects , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Pyridines/pharmacology , Thiophenes/pharmacology , Animals , Chlorocebus aethiops , Humans , Pyridines/chemical synthesis , Pyridines/chemistry , Pyridines/toxicity , Thiophenes/chemical synthesis , Thiophenes/chemistry , Thiophenes/toxicity , Vero Cells , Virus Replication/drug effects
5.
Int J Parasitol Drugs Drug Resist ; 6(3): 154-164, 2016 12.
Article in English | MEDLINE | ID: mdl-27490082

ABSTRACT

Chagas disease is a neglected tropical disease caused by the flagellated protozoan Trypanosoma cruzi. The current drugs used to treat this disease have limited efficacy and produce severe side effects. Quinolines, nitrogen heterocycle compounds that form complexes with heme, have a broad spectrum of antiprotozoal activity and are a promising class of new compounds for Chagas disease chemotherapy. In this study, we evaluated the activity of a series of 4-arylaminoquinoline-3-carbonitrile derivatives against all forms of Trypanosoma cruzi in vitro. Compound 1g showed promising activity against epimastigote forms when combined with hemin (IC50<1 µM), with better performance than benznidazole, the reference drug. This compound also inhibited the viability of trypomastigotes and intracellular amastigotes. The potency of 1g in combination with heme was enhanced against epimastigotes and trypomastigotes, suggesting a similar mechanism of action that occurs in Plasmodium spp. The addition of hemin to the culture medium increased trypanocidal activity of analog 1g without changing the cytotoxicity of the host cell, reaching an IC50 of 11.7 µM for trypomastigotes. The mechanism of action was demonstrated by the interaction of compound 1g with hemin in solution and prevention of heme peroxidation. Compound 1g and heme treatment induced alterations of the mitochondrion-kinetoplast complex in epimastigotes and trypomastigotes and also, accumulation of electron-dense deposits in amastigotes as visualized by transmission electron microscopy. The trypanocidal activity of 4-aminoquinolines and the elucidation of the mechanism involving interaction with heme is a neglected field of research, given the parasite's lack of heme biosynthetic pathway and the importance of this cofactor for parasite survival and growth. The results of this study can improve and guide rational drug development and combination treatment strategies.


Subject(s)
Aminoquinolines/pharmacology , Heme/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Cell Survival/drug effects , Inhibitory Concentration 50 , Microscopy, Electron, Transmission , Mitochondria/drug effects , Mitochondria/ultrastructure , Trypanosoma cruzi/physiology , Trypanosoma cruzi/ultrastructure
6.
Bioorg Med Chem ; 24(18): 4492-4498, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27485600

ABSTRACT

Ten 1-phenyl-1H-pyrazolo[3,4-b]pyridine derivatives connected by a linker group to benzenesulfonamide moieties with different substituents in the 4-position were synthesized and assayed against Plasmodium falciparum. These ten compounds exhibited activity in vitro against the chloroquine-resistant clone W2 with IC50 values ranging from 3.46 to 9.30µM. The most active derivatives with substituent R2=Cl or CH3 at the benzenesulfonamide moiety exhibited the lowest IC50. Compounds with an R1=CO2Et substituent at the 5-position of the 1H-pyrazolo[3,4-b]pyridine ring presented lower activity than those with a CN substituent. The 1H-pyrazolo[3,4-b]pyridine system appears to be promising for further studies as an antimalarial for overcoming the burden of resistance in P. falciparum.


Subject(s)
Antimalarials/chemical synthesis , Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Pyrazoles/pharmacology , Pyridines/pharmacology , Sulfonamides/pharmacology , Animals , Antimalarials/chemistry , Drug Design , Inhibitory Concentration 50 , Pyrazoles/chemistry , Pyridines/chemistry , Spectrum Analysis/methods , Sulfonamides/chemistry
7.
Antimicrob Agents Chemother ; 58(10): 6290-3, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25092697

ABSTRACT

An orally delivered, safe and effective treatment for leishmaniasis is an unmet medical need. Azoles and the pyrazolylpyrimidine allopurinol present leishmanicidal activity, but their clinical efficacies are variable. Here, we describe the activity of the new pyrazolyltetrazole hybrid, 5-[5-amino-1-(4'-methoxyphenyl)1H-pyrazole-4-yl]1H-tetrazole (MSN20). MSN20 showed a 50% inhibitory concentration (IC50) of 22.3 µM against amastigotes of Leishmania amazonensis and reduced significantly the parasite load in infected mice, suggesting its utility as a lead compound for the development of an oral treatment for leishmaniasis.


Subject(s)
Antiprotozoal Agents/administration & dosage , Antiprotozoal Agents/pharmacology , Leishmaniasis, Cutaneous/drug therapy , Pyrazoles/chemistry , Tetrazoles/chemistry , Administration, Oral , Animals , Antiprotozoal Agents/chemistry , Inhibitory Concentration 50 , Mice , Structure-Activity Relationship
8.
Chem Biol Drug Des ; 83(3): 272-7, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24119090

ABSTRACT

In this research, a series of substituted 5-(5-amino-1-aryl-1H-pyrazol-4-yl)-1H-tetrazoles were synthesized and evaluated for in vitro antileishmanial activity. Among the derivatives, examined compounds 3b and 3l exhibited promising activity against promastigotes and amastigotes forms of Leishmania amazonensis. The cytotoxicity of these compounds was evaluated on murine cells, giving access to the corresponding selectivity index (SI).


Subject(s)
Antiprotozoal Agents/pharmacology , Leishmania/drug effects , Tetrazoles/chemistry , Tetrazoles/pharmacology , Animals , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Cell Line , Cell Survival/drug effects , Mice , Mice, Inbred BALB C , Tetrazoles/chemical synthesis
9.
Bioorg Med Chem Lett ; 23(23): 6310-2, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-24125880

ABSTRACT

A new series of 5-(1-aryl-3-methyl-1H-pyrazol-4-yl)-1H-tetrazole derivatives (4a-m) and their precursor 1-aryl-3-methyl-1H-pyrazole-4-carbonitriles (3a-m) were synthesized and evaluated as antileishmanials against Leishmania braziliensis and Leishmania amazonensis promastigotes in vitro. In parallel, the cytotoxicity of these compounds was evaluated on the RAW 264.7 cell line. The results showed that among the assayed compounds the substituted 3-chlorophenyl (4a) (IC50/24h=15±0.14 µM) and 3,4-dichlorophenyl tetrazoles (4d) (IC50/24h=26±0.09 µM) were the most potent against L. braziliensis promastigotes, as compared the reference drug pentamidine, which presented IC50=13±0.04 µM. In addition, 4a and 4d derivatives were less cytotoxic than pentamidine. However, these tetrazole derivatives (4) and pyrazole-4-carbonitriles precursors (3) differ against each of the tested species and were more effective against L.braziliensis than on L. amazonensis.


Subject(s)
Leishmania/drug effects , Nitriles/chemistry , Pyrazoles/chemistry , Tetrazoles/chemical synthesis , Tetrazoles/pharmacology , Animals , Antiprotozoal Agents , Cell Line , Dose-Response Relationship, Drug , Mice , Stereoisomerism , Structure-Activity Relationship , Tetrazoles/chemistry
10.
Exp Parasitol ; 133(2): 201-10, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23219949

ABSTRACT

Because there is no vaccine in clinical use, control of Leishmaniasis relies almost exclusively on chemotherapy and the conventional treatments exhibit high toxicity for patients and emerging drug resistance. Recently, we showed that oral treatment with synthetic pyrazole carbohydrazide compounds induced lower parasite load in draining lymph nodes and reduced skin lesion size without causing any toxic effects in an experimental murine infection model with Leishmania amazonensis. In this study, CBA mice were infected in the footpad with L. amazonensis and then orally treated with pyrazole carbohydrazides derivatives, such as BrNO(2), NO(2)Cl and NO(2)Br and their histopathological and immunological effects were then investigated. Epidermis and dermis had lower levels of inflammatory infiltration compared to the infected untreated control mice. In the dermis of treated animals, the numbers of vacuolated macrophages containing intracellular parasites were far lower than in infected untreated animals. In addition to dermal macrophages, we also observed a mixed inflammatory infiltrate containing lymphocytes and granulocyte cells. Lower numbers of B cells (B220+) and T lymphocytes (CD3+) were identified in the lesions of treated mice compared with the untreated, infected mice. In draining lymph node cells, the number of T lymphocytes (CD3+) was decreased, and the numbers of B cells (CD19+) and CD8+ T cells were increased in infected mice, when compared with the non-infected control group. In additional, we have shown that infected treated and untreated lymph node cells had similar levels of TGF-ß and IFN-γ mRNA expression, whereas IL-4 was expressed at a lower level in the treated group. Increased levels of the specific anti-Leishmania IgG2a or IgG3 antibody subclass were observed in NO(2)Cl or BrNO(2)-treated group, respectively. Overall, our experimental findings suggest that pyrazole carbohydrazides exert modulation of IL-4 expression and B cell levels; however, further evaluation is required to determine the optimal treatment regime.


Subject(s)
Hydrazines/therapeutic use , Leishmania mexicana/pathogenicity , Leishmaniasis, Cutaneous/drug therapy , Pyrazoles/therapeutic use , Animals , Antibodies, Protozoan/blood , Cytokines/genetics , Cytokines/metabolism , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Hydrazines/chemistry , Hydrazines/pharmacology , Immunoglobulin G/blood , Immunoglobulin G/classification , Immunohistochemistry , Leishmania mexicana/drug effects , Leishmania mexicana/immunology , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/pathology , Lymph Nodes/cytology , Lymph Nodes/immunology , Lymph Nodes/pathology , Lymphocytes/classification , Lymphocytes/cytology , Macrophages/cytology , Macrophages/parasitology , Male , Mice , Mice, Inbred CBA , Pyrazoles/chemistry , Pyrazoles/pharmacology , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Skin/parasitology , Skin/pathology
11.
Molecules ; 17(11): 12961-73, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-23117435

ABSTRACT

Leishmaniasis is a neglected disease responsible for about 56,000 deaths every year. Despite its importance, there are no effective, safe and proper treatments for leishmaniasis due to strain resistance and/or drug side-effects. In this work we report the synthesis, molecular modeling, cytotoxicity and the antileishmanial profile of a series of 4-(1H-pyrazol-1-yl)benzenesulfonamides. Our experimental data showed an active profile for some compounds against Leishmania infantum and Leishmania amazonensis. The profile of two compounds against L. infantum was similar to that of pentamidine, but with lower cytotoxicity. Molecular modeling evaluation indicated that changes in electronic regions, orientation as well as lipophilicity of the derivatives were areas to improve the interaction with the parasitic target. Overall the compounds represent feasible prototypes for designing new molecules against L. infantum and L. amazonensis.


Subject(s)
Leishmania infantum/drug effects , Leishmania mexicana/drug effects , Sulfonamides/pharmacology , Trypanocidal Agents/pharmacology , Animals , Cell Survival/drug effects , Cells, Cultured , Drug Evaluation, Preclinical , Hydrophobic and Hydrophilic Interactions , Inhibitory Concentration 50 , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/physiology , Mice , Mice, Inbred BALB C , Models, Molecular , Molecular Conformation , Pentamidine/pharmacology , Quantum Theory , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry
12.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 7): o2135-6, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22798811

ABSTRACT

In the title compound, C(16)H(13)ClN(4)S, the thienopyridine fused-ring system is nearly planar (r.m.s. deviation = 0.0333 Å) and forms a dihedral angle of 4.4 (3)° with the attached dihydro-imidazole ring (r.m.s. deviation = 0.0429 Å) allowing for the formation of an intra-molecular (exocyclic amine)N-H⋯N(imine) hydrogen bond. The benzene rings of the disordered (50:50) -N(H)-C(6)H(4)Cl residue form dihedral angles of 59.1 (3) and 50.59 (15)° with the fused ring system. In the crystal, (imidazole amine)N-H⋯N(pyridine) hydrogen bonds lead to a supra-molecular helical chain along the b axis. The chains assemble into layers (ab plane) with inter-digitation of the chloro-benzene rings which results in weak C-H⋯Cl inter-actions in the c-axis direction.

13.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 7): o2217-8, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22798877

ABSTRACT

In the title compound, C(14)H(9)FN(2)O(2)S, the thieno[2,3-b]pyridine residue is almost planar (r.m.s. deviation = 0.0194 Å), with the carb-oxy-lic acid group [dihedral angle = 11.9 (3)°] and the benzene ring [71.1 (4)°] being twisted out of this plane to different extents. An intra-molecular N-H⋯O(carbon-yl) hydrogen bond closes an S(6) ring. Supra-molecular chains along [01-1] mediated by O-H⋯N(pyridine) hydrogen bonds feature in the crystal. A three-dimensional architecture is completed by π-π inter-actions occurring between the benzene ring and the two rings of the thieno[2,3-b]pyridine residue [centroid-centroid distances = 3.6963 (13) and 3.3812 (13) Å]. The F atom is disordered over the two meta sites in a near statistical ratio [0.545 (5):0.455 (5)].

14.
Org Med Chem Lett ; 2(1): 3, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22373524

ABSTRACT

BACKGROUND: Herpes simplex virus type-1 (HSV-1) is the primary cause of facial lesions (mouth, lips, and eyes) in humans. The widespread use of acyclovir and nucleoside analogues has led to emergence of HSV strains that are resistant to these drugs. Recently, non-nucleoside anti-HSV compounds have received considerable attention. 1,6-Naphthyridines are a class of heterocyclic compounds that exhibit a broad spectrum of biological activities such as inhibitor of HIV-1 integrase, HCMV, FGF receptor-1 tyrosine kinase, and the enzyme acetylcholinesterase. We previously reported the synthesis, SAR studies, and evaluation anti-HSV-1 activity of 3H-benzo[b]pyrazolo[3,4-h]-1,6-naphthyridines. In the course of our search for new 1,6-naphthyridines derivatives with potential activity against HSV-1, we have synthesized and evaluated new 3H-benzo[b]pyrazolo[3,4-h]-1,6-naphthyridines (1a-k) and 3H-pyrido[2,3-b]pyrazolo[3,4-h]-1,6-naphthyridines (2a-c). RESULTS: A known synthetic approach was used for preparing new 3H-benzo[b]pyrazolo[3,4-h]-1,6-naphthyridines (1a-k) and 3H-pyrido[2,3-b]pyrazolo[3,4-h]-1,6-naphthyridines (2a-c), starting from ethyl 4-chloro-1-phenyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate (7). All compounds were identified by FTIR, 1H NMR, and mass spectrometry. The antiviral effect on HSV-1 virus replication was determined. CONCLUSIONS: The compounds 1d, 1f, 1g, and 1h exhibited the highest anti-HSV-1 activity. In general, 3H-benzo[b]pyrazolo[3,4-h]-1,6-naphthyridines were more effective inhibitors than their corresponding 3H-pyrido[2,3-b]pyrazolo[3,4-h]-1,6-naphthyridines. The compound 1h reduced the virus yield in 91% at 50 µM and exhibited a low cytotoxicity (CC50 600 µM).

15.
Bioorg Med Chem Lett ; 21(24): 7451-4, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22055204

ABSTRACT

A series of 1-aryl-4-(4,5-dihydro-1H-imidazol-2-yl)-1H-pyrazoles (4a-g) and 5-amino-1-aryl-4-(4,5-dihydro-1H-imidazol-2-yl)-1H-pyrazoles (5a-g) were synthesized and evaluated in vitro against three Leishmania species: L. amazonensis, L. braziliensis and L. infantum (L. chagasi syn.). The cytotoxicity was assessed. Among the derivatives examined, six compounds emerged as the most active on promastigotes forms of L. amazonensis with IC(50) values ranging from 15 to 60 µM. The reference drug pentamidine presented IC(50)=10 µM. However, these new compounds were less cytotoxic than pentamidine. Based on these results, the more promising derivative 5d was tested further in vivo. This compound showed inhibition of the progression of cutaneous lesions in CBA mice infected with L. amazonensis relative to an untreated control.


Subject(s)
Antiprotozoal Agents/chemical synthesis , Imidazoles/chemical synthesis , Pyrazoles/chemical synthesis , Animals , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Imidazoles/chemistry , Imidazoles/pharmacology , Imidazoles/therapeutic use , Leishmania/drug effects , Leishmaniasis/drug therapy , Mice , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Structure-Activity Relationship
16.
Am J Trop Med Hyg ; 80(4): 568-73, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19346377

ABSTRACT

Newly synthesized pyrazole carbohydrazide derivatives with substituents X = Br/Y = NO(2) and X = NO(2)/Y = Cl were independently investigated in the CBA mouse model of cutaneous leishmaniasis. Animals were infected with Leishmania amazonensis and treated two weeks after the parasitic infection with the pyrazole carbohydrazides for 45 days. Oral treatment with both compounds controlled evolution of footpad cutaneous lesions and dissemination of parasites to draining lymph nodes. Nitric oxide generation was observed in supernatants of lymph node cells from infected CBA mice that were treated with these compounds. The pyrazole carbohydrazide derivatives did not show any toxicity or cause alterations in body weight, plasma concentrations of alanine aminotransferase and aspartate aminotransferase, and urinary creatinine levels, but promoted a small decrease in blood neutrophils. These results provide new perspectives on the development of drugs with activities against leishmaniasis.


Subject(s)
Antiprotozoal Agents/chemistry , Antiprotozoal Agents/therapeutic use , Hydrazines/chemistry , Leishmania mexicana/drug effects , Leishmaniasis/drug therapy , Pyrazoles/chemistry , Alanine Transaminase/metabolism , Animals , Antiprotozoal Agents/pharmacology , Aspartate Aminotransferases/metabolism , Body Weight/drug effects , Creatinine/blood , Hydrazines/pharmacology , Hydrazines/therapeutic use , Lymph Nodes/parasitology , Lymphocytes , Male , Mice , Mice, Inbred CBA , Molecular Structure , Neutrophils , Pyrazoles/pharmacology , Pyrazoles/therapeutic use
17.
Curr Microbiol ; 57(5): 463-8, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18810543

ABSTRACT

Bacterial infections are a significant cause of morbidity and mortality among critically ill patients. The increase of antibiotic resistance in bacteria from human microbiota-such as Staphylococcus epidermidis, an important nosocomial pathogen that affects immunocompromised patients or those with indwelling devices-increased the desire for new antibiotics. In this study we designed, synthesized, and determined the antimicrobial activity of 27 thieno[2,3-b]pyridines (1, 2, 2a-2m, 3, 3a-3m) derivatives against a drug-resistant clinical S. epidermidis strain. In addition, we performed a structure-activity relationship analysis using a molecular modeling approach, and discuss the drug absorption, distribution, metabolism, excretion, and toxicity profile and Lipinski's "rule of five," which are tools to assess the relationship between structures and drug-like properties of active compounds. Our results showed that compound 3b (5-(1H-tetrazol-5-yl)-4-(3;-methylphenylamino)thieno[2,3-b]pyridine) was as active as oxacillin and chloramphenicol but with lower theoretical toxicity risks and a better drug likeness and drug score potential than chloramphenicol. All molecular modeling and biological results reinforced the promising profile of 3b for further experimental investigation and development of new antibacterial drugs.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Drug Design , Drug Resistance, Bacterial , Staphylococcal Infections/drug therapy , Staphylococcus epidermidis/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacokinetics , Bacteria/drug effects , Drug Evaluation, Preclinical , Humans , Microbial Sensitivity Tests , Models, Molecular , Pyridines/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacokinetics , Pyridines/pharmacology , Staphylococcal Infections/microbiology , Structure-Activity Relationship
18.
Bioorg Med Chem ; 16(17): 8196-204, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-18701299

ABSTRACT

Antibacterial resistance is a complex problem that contributes to health and economic losses worldwide. The Staphylococcus epidermidis is an important nosocomial pathogen that affects immunocompromised patients or those with indwelling devices. Currently, there are several resistant strains including S. epidermidis that became an important medical issue mainly in hospital environment. In this work, we report the biological and theoretical evaluations of a 4-(arylamino)-1-phenyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylic acids series (1, 1a-m) and the comparison with a new isosteric ring nucleus series, 4-(arylamino)thieno[2,3-b]pyridine-5-carboxylic acids derivatives (2, 2a-m). Our results revealed the 1H-pyrazolo[3,4-b]pyridine derivatives significant antibacterial activity against a drug-resistant S. epidermidis clinical strain in contrast to the thieno[2,3-b]pyridine series. The minimal inhibitory concentration (MIC) of the most active derivatives (1a, 1c, 1e, and 1f) against S. epidermidis was similar to that of oxacillin and twofold better than chloramphenicol. Interestingly, the position of the functional groups has a great impact on the activity as observed in our structure-activity relationship (SAR) study. The SAR of 1H-pyrazolo[3,4-b]pyridine derivatives shows that the highest inhibitory activity is observed when the meta position is occupied by electronegative substituents. The molecular modeling analysis of frontier molecular orbitals revealed that the LUMO density is less intense in meta than in ortho and para positions for both series (1 and 2), whereas HOMO density is overconcentrated in 1H-pyrazolo[3,4-b]pyridine ring nucleus compared to the thieno[2,3-b]pyridine system. The most active derivatives of series 1 were submitted to in silico ADMET screening, which confirmed these compounds as potential antibacterial candidates.


Subject(s)
Anti-Bacterial Agents/pharmacology , Pyrazoles/pharmacology , Pyridines/pharmacology , Staphylococcus epidermidis/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Resistance, Bacterial/drug effects , Humans , Leukocytes, Mononuclear/drug effects , Microbial Sensitivity Tests , Models, Molecular , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Reference Values , Staphylococcus epidermidis/growth & development , Structure-Activity Relationship , Time Factors
19.
Parasitol Res ; 103(1): 1-10, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18389282

ABSTRACT

Leishmaniasis is a disease caused by flagellate protozoan Leishmania spp. and represents an emergent illness with high morbidity and mortality in the tropics and subtropics. Since the discovery of the first drugs for Leishmaniasis treatment (i.e., pentavalent antimonials), until the current days, the search for substances with antileishmanial activity, without toxic effects, and able to overcome the emergence of drug resistant strains still remains as the current goal. This article reports the development of new chemotherapies through the rational design of new drugs, the use of products derived from microorganisms and plants, and treatments related to immunity as new alternatives for the chemotherapy of leishmaniasis.


Subject(s)
Antiprotozoal Agents/therapeutic use , Leishmaniasis/drug therapy , Biological Products/therapeutic use , Drug Design , Humans
20.
Bioorg Med Chem ; 16(1): 313-21, 2008 Jan 01.
Article in English | MEDLINE | ID: mdl-17937990

ABSTRACT

Herpes Simplex Virus (HSV) infections are among the most common human diseases. In this work, we assess the structural features and electronic properties of a series of ten 1-hydroxyacridone derivatives (1a-j) recently described as a new class of non-nucleoside inhibitors of Herpes Simplex Virus-1 (HSV-1). Based on these molecules, we applied rigid analogue and isosteric replacement approaches to design and synthesize nine new 3H-benzo[b]pyrazolo[3,4-h]-1,6-naphthyridine derivatives (2a-i). The biological and computational results of these new molecules were compared with 1-hydroxyacridones. An inhibitory profile was observed in 10-Cl substituted 3H-benzo[b]pyrazolo[3,4-h]-1,6-naphthyridine derivative (2f), which presents the same substituent at the analogous position of 1-hydroxyacridone derivative (1b). The structure-activity relationship (SAR) studies pointed out the 10-position next to nitrogen atom as important for the anti-HSV-1 profile in the pyrazolo-naphthyridine derivatives tested, which reinforced the promising profile for further experimental investigation. The most potent acridone and pyrazolo-naphthridine derivatives were also submitted to an in silico ADMET screening in order to determine their overall drug-score, which confirmed their potential antiviral profile.


Subject(s)
Acridines/chemistry , Antiviral Agents/chemistry , Herpesvirus 1, Human/drug effects , Naphthyridines/chemistry , Naphthyridines/pharmacology , Acridines/pharmacology , Acridones , Antiviral Agents/pharmacology , Drug Design , Drug Evaluation, Preclinical , Humans , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...