Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Trials ; 25(1): 433, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956676

ABSTRACT

BACKGROUND: Surfactant is a well-established therapy for preterm neonates affected by respiratory distress syndrome (RDS). The goals of different methods of surfactant administration are to reduce the duration of mechanical ventilation and the severity of bronchopulmonary dysplasia (BPD); however, the optimal administration method remains unknown. This study compares the effectiveness of the INtubate-RECruit-SURfactant-Extubate (IN-REC-SUR-E) technique with the less-invasive surfactant administration (LISA) technique, in increasing BPD-free survival of preterm infants. This is an international unblinded multicenter randomized controlled study in which preterm infants will be randomized into two groups to receive IN-REC-SUR-E or LISA surfactant administration. METHODS: In this study, 382 infants born at 24+0-27+6 weeks' gestation, not intubated in the delivery room and failing nasal continuous positive airway pressure (nCPAP) or nasal intermittent positive pressure ventilation (NIPPV) during the first 24 h of life, will be randomized 1:1 to receive IN-REC-SUR-E or LISA surfactant administration. The primary outcome is a composite outcome of death or BPD at 36 weeks' postmenstrual age. The secondary outcomes are BPD at 36 weeks' postmenstrual age; death; pulse oximetry/fraction of inspired oxygen; severe intraventricular hemorrhage; pneumothorax; duration of respiratory support and oxygen therapy; pulmonary hemorrhage; patent ductus arteriosus undergoing treatment; percentage of infants receiving more doses of surfactant; periventricular leukomalacia, severe retinopathy of prematurity, necrotizing enterocolitis, sepsis; total in-hospital stay; systemic postnatal steroids; neurodevelopmental outcomes; and respiratory function testing at 24 months of age. Randomization will be centrally provided using both stratification and permuted blocks with random block sizes and block order. Stratification factors will include center and gestational age (24+0 to 25+6 weeks or 26+0 to 27+6 weeks). Analyses will be conducted in both intention-to-treat and per-protocol populations, utilizing a log-binomial regression model that corrects for stratification factors to estimate the adjusted relative risk (RR). DISCUSSION: This trial is designed to provide robust data on the best method of surfactant administration in spontaneously breathing preterm infants born at 24+0-27+6 weeks' gestation affected by RDS and failing nCPAP or NIPPV during the first 24 h of life, comparing IN-REC-SUR-E to LISA technique, in increasing BPD-free survival at 36 weeks' postmenstrual age of life. TRIAL REGISTRATION: ClinicalTrials.gov NCT05711966. Registered on February 3, 2023.


Subject(s)
Infant, Premature , Pulmonary Surfactants , Respiratory Distress Syndrome, Newborn , Humans , Respiratory Distress Syndrome, Newborn/therapy , Respiratory Distress Syndrome, Newborn/mortality , Infant, Newborn , Pulmonary Surfactants/administration & dosage , Treatment Outcome , Gestational Age , Continuous Positive Airway Pressure , Bronchopulmonary Dysplasia/therapy , Randomized Controlled Trials as Topic , Multicenter Studies as Topic , Time Factors , Airway Extubation/adverse effects , Intubation, Intratracheal , Female
2.
Nat Commun ; 14(1): 5072, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37604801

ABSTRACT

The hinged-lid model was long accepted as the canonical model for fast inactivation in Nav channels. It predicts that the hydrophobic IFM motif acts intracellularly as the gating particle that binds and occludes the pore during fast inactivation. However, the observation in recent high-resolution structures that the bound IFM motif is located far from the pore, contradicts this preconception. Here, we provide a mechanistic reinterpretation of fast inactivation based on structural analysis and ionic/gating current measurements. We demonstrate that in Nav1.4 the final inactivation gate is comprised of two hydrophobic rings at the bottom of S6 helices. These rings function in series and close downstream of IFM binding. Reducing the volume of the sidechain in both rings leads to a partially conductive, leaky inactivated state and decreases the selectivity for Na+ ion. Altogether, we present an alternative molecular framework to describe fast inactivation.


Subject(s)
Ear Auricle , Electric Conductivity , Ion Transport , Ions
3.
Res Sq ; 2023 May 22.
Article in English | MEDLINE | ID: mdl-37292679

ABSTRACT

The hinged-lid model is long accepted as the canonical model for fast inactivation in Nav channels. It predicts that the hydrophobic IFM motif acts intracellularly as the gating particle that binds and occludes the pore during fast inactivation. However, the observation in recent high-resolution structures that the bound IFM motif locates far from the pore, contradicts this preconception. Here, we provide a mechanistic reinterpretation of fast inactivation based on structural analysis and ionic/gating current measurements. We demonstrate that in Nav1.4 the final inactivation gate is comprised of two hydrophobic rings at the bottom of S6 helices. These rings function in series and close downstream of IFM binding. Reducing the volume of the sidechain in both rings leads to a partially conductive "leaky" inactivated state and decreases the selectivity for Na + ion. Altogether, we present an alternative molecular framework to describe fast inactivation.

4.
bioRxiv ; 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37162849

ABSTRACT

Fast Inactivation in voltage-gated Na + channels plays essential roles in numerous physiological functions. The canonical hinged-lid model has long predicted that a hydrophobic motif in the DIII-DIV linker (IFM) acts as the gating particle that occludes the permeation pathway during fast inactivation. However, the fact that the IFM motif is located far from the pore in recent high-resolution structures of Nav + channels contradicts this status quo model. The precise molecular determinants of fast inactivation gate once again, become an open question. Here, we provide a mechanistic reinterpretation of fast inactivation based on ionic and gating current data. In Nav1.4 the actual inactivation gate is comprised of two hydrophobic rings at the bottom of S6. These function in series and closing once the IFM motif binds. Reducing the volume of the sidechain in both rings led to a partially conductive inactivated state. Our experiments also point to a previously overlooked coupling pathway between the bottom of S6 and the selectivity filter.

5.
Cir Cir ; 91(1): 117-121, 2023.
Article in English | MEDLINE | ID: mdl-36787611

ABSTRACT

Post-incisional ventral hernia is estimated at 5-30%, when the content of the abdominal cavity migrates to the hernial sac (HSV), with a HSV/abdominal cavity volume ratio > 25%, conditioning systemic changes defined as "loss of domain". A 27-year-old male presented with ventral hernia with loss of domain that required pre-operative preparation techniques, using application of botulinum toxin A (IncobotulinumtoxinA) and pneumoperitoneum, both guided by image. A ventral plasty was performed with adequate return of the viscera to the abdominal cavity. The combination of both techniques seems to be a safe procedure to carry out a tension-free repair.


La hernia ventral postincisional se estima en 5 al 30%, cuando el contenido de la cavidad abdominal migra al saco herniario, con una relación VSH/VCA > 25% condicionando cambios sistémicos se define como "pérdida de dominio". Masculino de 27 años con hernia ventral con pérdida de dominio que ameritó técnicas de preparación preoperatoria, utilizando toxina botulínica A (IncobotulinumtoxinA) y neumoperitoneo, ambos guíados por imagen. Se realizó una plastia ventral con adecuado regreso de las vísceras a la cavidad abdominal. La combinación de ambas técnicas es un procedimiento seguro para realizar una reparación libre de tensión.


Subject(s)
Abdominal Wall , Botulinum Toxins, Type A , Hernia, Ventral , Pneumoperitoneum , Male , Humans , Adult , Botulinum Toxins, Type A/therapeutic use , Pneumoperitoneum/etiology , Herniorrhaphy/methods , Pneumoperitoneum, Artificial/methods , Hernia, Ventral/complications , Hernia, Ventral/drug therapy , Hernia, Ventral/surgery , Preoperative Care/methods , Surgical Mesh , Abdominal Wall/surgery
6.
Biophys J ; 122(4): 661-671, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36654507

ABSTRACT

Perturbing the temperature of a system modifies its energy landscape, thus providing a ubiquitous tool to understand biological processes. Here, we developed a framework to generate sudden temperature jumps (Tjumps) and sustained temperature steps (Tsteps) to study the temperature dependence of membrane proteins under voltage clamp while measuring the membrane temperature. Utilizing the melanin under the Xenopus laevis oocytes membrane as a photothermal transducer, we achieved short Tjumps up to 9°C in less than 1.5 ms and constant Tsteps for durations up to 150 ms. We followed the temperature at the membrane with sub-ms time resolution by measuring the time course of membrane capacitance, which is linearly related to temperature. We applied Tjumps in Kir1.1 isoform b, which reveals a highly temperature-sensitive blockage relief, and characterized the effects of Tsteps on the temperature-sensitive channels TRPM8 and TRPV1. These newly developed approaches provide a general tool to study membrane protein thermodynamics.


Subject(s)
Ion Channels , Oocytes , Animals , Temperature , Membrane Potentials , Ion Channels/metabolism , Cell Membrane/metabolism , Thermodynamics , Xenopus laevis/metabolism , Oocytes/metabolism
7.
Biophys Rev ; 14(2): 569-577, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35528029

ABSTRACT

The observation that membrane capacitance increases with temperature has led to the development of new methods of neuronal stimulation using light. The optocapacitive effect refers to a light-induced change in capacitance produced by the heating of the membrane through a photothermal effect. This change in capacitance manifests as a current, named optocapacitive current that depolarizes cells and therefore can be used to stimulate excitable tissues. Here, we discuss how optocapacitance arises from basic membrane properties, the characteristics of the optocapacitive current, its use for neuronal stimulation, and the challenges for its application in vivo.

8.
Proc Natl Acad Sci U S A ; 117(24): 13339-13349, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32482882

ABSTRACT

The ability to modulate cellular electrophysiology is fundamental to the investigation of development, function, and disease. Currently, there is a need for remote, nongenetic, light-induced control of cellular activity in two-dimensional (2D) and three-dimensional (3D) platforms. Here, we report a breakthrough hybrid nanomaterial for remote, nongenetic, photothermal stimulation of 2D and 3D neural cellular systems. We combine one-dimensional (1D) nanowires (NWs) and 2D graphene flakes grown out-of-plane for highly controlled photothermal stimulation at subcellular precision without the need for genetic modification, with laser energies lower than a hundred nanojoules, one to two orders of magnitude lower than Au-, C-, and Si-based nanomaterials. Photothermal stimulation using NW-templated 3D fuzzy graphene (NT-3DFG) is flexible due to its broadband absorption and does not generate cellular stress. Therefore, it serves as a powerful toolset for studies of cell signaling within and between tissues and can enable therapeutic interventions.


Subject(s)
Graphite/chemistry , Nanostructures/chemistry , Neurons/radiation effects , Animals , Electrochemical Techniques , Lasers , Nanowires/chemistry , Neurons/physiology , Photochemical Processes , Rats , Spheroids, Cellular/physiology , Spheroids, Cellular/radiation effects
9.
J Gen Physiol ; 150(5): 697-711, 2018 05 07.
Article in English | MEDLINE | ID: mdl-29643172

ABSTRACT

Mutations in connexin 26 (Cx26) hemichannels can lead to syndromic deafness that affects the cochlea and skin. These mutations lead to gain-of-function hemichannel phenotypes by unknown molecular mechanisms. In this study, we investigate the biophysical properties of the syndromic mutant Cx26G12R (G12R). Unlike wild-type Cx26, G12R macroscopic hemichannel currents do not saturate upon depolarization, and deactivation is faster during hyperpolarization, suggesting that these channels have impaired fast and slow gating. Single G12R hemichannels show a large increase in open probability, and transitions to the subconductance state are rare and short-lived, demonstrating an inoperative fast gating mechanism. Molecular dynamics simulations indicate that G12R causes a displacement of the N terminus toward the cytoplasm, favoring an interaction between R12 in the N terminus and R99 in the intracellular loop. Disruption of this interaction recovers the fast and slow voltage-dependent gating mechanisms. These results suggest that the mechanisms of fast and slow gating in connexin hemichannels are coupled and provide a molecular mechanism for the gain-of-function phenotype displayed by the syndromic G12R mutation.


Subject(s)
Connexin 26/metabolism , Deafness/genetics , Ichthyosis/genetics , Ion Channel Gating , Keratitis/genetics , Mutation, Missense , Animals , Connexin 26/chemistry , Connexin 26/genetics , Humans , Molecular Dynamics Simulation , Xenopus
10.
Food Chem Toxicol ; 115: 306-314, 2018 May.
Article in English | MEDLINE | ID: mdl-29567409

ABSTRACT

This study aimed to assess the risk-benefit balance associated to fish consumption by Portuguese preschool children. For this purpose, databases (from IPMA and literature) were mined and mathematically processed by a model based on the Extreme Value Theory assuming consumption scenarios. Eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) and selenium (Se) and methylmercury (MeHg) were selected as critical components of fish, given their health impact and significant contents in some fish species. Assessment also took into account that Se may protect against MeHg toxicity. With exception of blue shark, Se Health Benefit Value (Se-HBV), was always positive (ranging between 3.3 and 14.9) and Se:MeHg ratio was always higher than one (3.8 to 32.3). It was also estimated that the deleterious effects of MeHg on children IQ were offset by the beneficial impact of EPA+DHA in fish except for grilled black scabbardfish consumed every day. Blue shark, regardless of the culinary treatment, yielded very high probabilities of exceeding MeHg TWI (higher than 84 % with a single weekly meal), thus raising serious concerns. EPA+DHA benefits were high in salmon regardless of culinary treatment (> 84 %). Fish consumption by children is advisable with exception of blue shark and boiled and grilled tuna.


Subject(s)
Dietary Exposure , Docosahexaenoic Acids/administration & dosage , Eicosapentaenoic Acid/administration & dosage , Fishes , Methylmercury Compounds/toxicity , Seafood , Selenium/administration & dosage , Animals , Child, Preschool , Humans , Portugal , Risk Assessment , Species Specificity
11.
Biophys J ; 114(2): 283-288, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29273263

ABSTRACT

Millisecond pulses of laser light delivered to gold nanoparticles residing in close proximity to the surface membrane of neurons can induce membrane depolarization and initiate an action potential. An optocapacitance mechanism proposed as the basis of this effect posits that the membrane-interfaced particle photothermally induces a cell-depolarizing capacitive current, and predicts that delivering a given laser pulse energy within a shorter period should increase the pulse's action-potential-generating effectiveness by increasing the magnitude of this capacitive current. Experiments on dorsal root ganglion cells show that, for each of a group of interfaced gold nanoparticles and microscale carbon particles, reducing pulse duration from milliseconds to microseconds markedly decreases the minimal pulse energy required for AP generation, providing strong support for the optocapacitance mechanism hypothesis.


Subject(s)
Action Potentials , Lasers , Optical Phenomena , Carbon/chemistry , Ganglia, Spinal/cytology , Gold/chemistry , Metal Nanoparticles/chemistry , Neurons/cytology
12.
Sci Rep ; 7(1): 15851, 2017 Nov 20.
Article in English | MEDLINE | ID: mdl-29158540

ABSTRACT

The opening of connexin (Cx) hemichannels in the membrane is tightly regulated by calcium (Ca2+) and membrane voltage. Electrophysiological and atomic force microscopy experiments indicate that Ca2+ stabilizes the hemichannel closed state. However, structural data show that Ca2+ binding induces an electrostatic seal preventing ion transport without significant structural rearrangements. In agreement with the closed-state stabilization hypothesis, we found that the apparent Ca2+ sensitivity is increased as the voltage is made more negative. Moreover, the voltage and Ca2+ dependence of the channel kinetics indicate that the voltage sensor movement and Ca2+ binding are allosterically coupled. An allosteric kinetic model in which the Ca2+ decreases the energy necessary to deactivate the voltage sensor reproduces the effects of Ca2+ and voltage in Cx46 hemichannels. In agreement with the model and suggesting a conformational change that narrows the pore, Ca2+ inhibits the water flux through Cx hemichannels. We conclude that Ca2+ and voltage act allosterically to stabilize the closed conformation of Cx46 hemichannels.


Subject(s)
Calcium Channels/genetics , Calcium Signaling/genetics , Calcium/metabolism , Connexins/genetics , Animals , Connexins/metabolism , Electrophysiology , Humans , Kinetics , Membrane Potentials/genetics , Microscopy, Atomic Force , Oocytes/growth & development , Oocytes/metabolism , Oocytes/ultrastructure , Rats , Xenopus laevis/genetics , Xenopus laevis/growth & development
13.
J Biol Chem ; 291(30): 15740-52, 2016 07 22.
Article in English | MEDLINE | ID: mdl-27143357

ABSTRACT

Connexins (Cxs) are a family of membrane-spanning proteins that form gap junction channels and hemichannels. Connexin-based channels exhibit two distinct voltage-dependent gating mechanisms termed slow and fast gating. Residues located at the C terminus of the first transmembrane segment (TM-1) are important structural components of the slow gate. Here, we determined the role of the charged residues at the end of TM-1 in voltage sensing in Cx26, Cx46, and Cx50. Conductance/voltage curves obtained from tail currents together with kinetics analysis reveal that the fast and slow gates of Cx26 involves the movement of two and four charges across the electric field, respectively. Primary sequence alignment of different Cxs shows the presence of well conserved glutamate residues in the C terminus of TM-1; only Cx26 contains a lysine in that position (lysine 41). Neutralization of lysine 41 in Cx26 increases the voltage dependence of the slow gate. Swapping of lysine 41 with glutamate 42 maintains the voltage dependence. In Cx46, neutralization of negative charges or addition of a positive charge in the Cx26 equivalent region reduced the slow gate voltage dependence. In Cx50, the addition of a glutamate in the same region decreased the voltage dependence, and the neutralization of a negative charge increased it. These results indicate that the charges at the end of TM-1 are part of the slow gate voltage sensor in Cxs. The fact that Cx42, which has no charge in this region, still presents voltage-dependent slow gating suggests that charges still unidentified also contribute to the slow gate voltage sensitivity.


Subject(s)
Avian Proteins/metabolism , Connexins/metabolism , Ion Channel Gating/physiology , Membrane Potentials/physiology , Animals , Avian Proteins/genetics , Chickens , Connexins/genetics , Humans , Protein Domains , Rats , Xenopus laevis
14.
BMC Cell Biol ; 17 Suppl 1: 17, 2016 May 24.
Article in English | MEDLINE | ID: mdl-27228968

ABSTRACT

Mutations in human connexin (Cx) genes have been related to diseases, which we termed connexinopathies. Such hereditary disorders include nonsyndromic or syndromic deafness (Cx26, Cx30), Charcot Marie Tooth disease (Cx32), occulodentodigital dysplasia and cardiopathies (Cx43), and cataracts (Cx46, Cx50). Despite the clinical phenotypes of connexinopathies have been well documented, their pathogenic molecular determinants remain elusive. The purpose of this work is to identify common/uncommon patterns in channels function among Cx mutations linked to human diseases. To this end, we compiled and discussed the effect of mutations associated to Cx26, Cx32, Cx43, and Cx50 over gap junction channels and hemichannels, highlighting the function of the structural channel domains in which mutations are located and their possible role affecting oligomerization, gating and perm/selectivity processes.


Subject(s)
Channelopathies/metabolism , Connexins/chemistry , Connexins/metabolism , Animals , Channelopathies/genetics , Connexins/genetics , Gap Junctions/metabolism , Humans , Ion Channel Gating , Models, Molecular , Mutation/genetics
15.
Nanotechnology ; 27(18): 185601, 2016 May 06.
Article in English | MEDLINE | ID: mdl-26999014

ABSTRACT

We analyse the effects of substrate polishing and of the epilayer thickness on the quality of graphene layers grown by high temperature annealing on 3C-SiC(111)/Si(111) by scanning tunnelling microscopy, x-ray photoelectron spectroscopy, Raman spectroscopy, low energy electron diffraction and high resolution angle resolved photoemission spectroscopy. The results provide a comprehensive set of data confirming the superior quality of the graphene layers obtained on polished substrates, and the limitations of the growth obtained on unpolished surfaces.

16.
Front Physiol ; 7: 1, 2016.
Article in English | MEDLINE | ID: mdl-26858649

ABSTRACT

Connexin-based channels comprise hemichannels and gap junction channels. The opening of hemichannels allow for the flux of ions and molecules from the extracellular space into the cell and vice versa. Similarly, the opening of gap junction channels permits the diffusional exchange of ions and molecules between the cytoplasm and contacting cells. The controlled opening of hemichannels has been associated with several physiological cellular processes; thereby unregulated hemichannel activity may induce loss of cellular homeostasis and cell death. Hemichannel activity can be regulated through several mechanisms, such as phosphorylation, divalent cations and changes in membrane potential. Additionally, it was recently postulated that redox molecules could modify hemichannels properties in vitro. However, the molecular mechanism by which redox molecules interact with hemichannels is poorly understood. In this work, we discuss the current knowledge on connexin redox regulation and we propose the hypothesis that extracellular cysteines could be important for sensing changes in redox potential. Future studies on this topic will offer new insight into hemichannel function, thereby expanding the understanding of the contribution of hemichannels to disease progression.

17.
Am J Transplant ; 16(1): 72-82, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26317573

ABSTRACT

We examined intraepithelial lymphocytes (IELs) in 213 ileal biopsies from 16 bowel grafts and compared them with 32 biopsies from native intestines. During the first year posttransplantation, grafts exhibited low levels of IELs (percentage of CD103(+) cells) principally due to reduced CD3(+) CD8(+) cells, while CD103(+) CD3(-) cell numbers became significantly higher. Changes in IEL subsets did not correlate with histology results, isolated intestine, or multivisceral transplants, but CD3(-) IELs were significantly higher in patients receiving corticosteroids. Compared with controls, more CD3(-) IELs of the grafts expressed CD56, NKp44, interleukin (IL)-23 receptor, retinoid-related orphan receptor gamma t (RORγt), and CCR6. No difference was observed in granzyme B, and CD3(-) CD127(+) cells were more abundant in native intestines. Ex vivo, and after in vitro activation, CD3(-) IELs in grafts produced significantly more interferon (IFN)-γ and IL-22, and a double IFNγ(+) IL-22(+) population was observed. Epithelial cell-depleted grafts IELs were cytotoxic, whereas this was not observed in controls. In conclusion, different from native intestines, a CD3(-) IEL subset predominates in grafts, showing features of natural killer cells and intraepithelial ILC1 (CD56(+) , NKp44(+) , CCR6(+) , CD127(-) , cytotoxicity, and IFNγ secretion), ILC3 (CD56(+) , NKp44(+) , IL-23R(+) , CCR6(+) , RORγt(+) , and IL-22 secretion), and intermediate ILC1-ILC3 phenotypes (IFNγ(+) IL-22(+) ). Viability of intestinal grafts may depend on the balance among proinflammatory and homeostatic roles of ILC subsets.


Subject(s)
Antigens, CD/metabolism , CD3 Complex/metabolism , Epithelial Cells/immunology , Integrin alpha Chains/metabolism , Intestinal Diseases/surgery , Intestines/transplantation , T-Lymphocyte Subsets/immunology , Adult , Aged , Allografts , Case-Control Studies , Cytokines/metabolism , Female , Humans , Intestinal Diseases/immunology , Killer Cells, Natural/immunology , Lymphocyte Activation , Male , Middle Aged , Young Adult
19.
Infect Immun ; 81(4): 1207-20, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23357385

ABSTRACT

Salmonella enterica serotype Gallinarum is the causative agent of fowl typhoid, a disease characterized by high morbidity and mortality that causes major economic losses in poultry production. We have reported that S. Gallinarum harbors a type VI secretion system (T6SS) encoded in Salmonella pathogenicity island 19 (SPI-19) that is required for efficient colonization of chicks. In the present study, we aimed to characterize the SPI-19 T6SS functionality and to investigate the mechanisms behind the phenotypes previously observed in vivo. Expression analyses revealed that SPI-19 T6SS core components are expressed and produced under in vitro bacterial growth conditions. However, secretion of the structural/secreted components Hcp1, Hcp2, and VgrG to the culture medium could not be determined, suggesting that additional signals are required for T6SS-dependent secretion of these proteins. In vitro bacterial competition assays failed to demonstrate a role for SPI-19 T6SS in interbacterial killing. In contrast, cell culture experiments with murine and avian macrophages (RAW264.7 and HD11, respectively) revealed production of a green fluorescent protein-tagged version of VgrG soon after Salmonella uptake. Furthermore, infection of RAW264.7 and HD11 macrophages with deletion mutants of SPI-19 or strains with genes encoding specific T6SS core components (clpV and vgrG) revealed that SPI-19 T6SS contributes to S. Gallinarum survival within macrophages at 20 h postuptake. SPI-19 T6SS function was not linked to Salmonella-induced cytotoxicity or cell death of infected macrophages, as has been described for other T6SS. Our data indicate that SPI-19 T6SS corresponds to a novel tool used by Salmonella to survive within host cells.


Subject(s)
Bacterial Secretion Systems , Genomic Islands , Macrophages/microbiology , Membrane Transport Proteins/metabolism , Microbial Viability , Salmonella enterica/pathogenicity , Virulence Factors/metabolism , Animals , Cell Line , Cell Survival , Chickens , Gene Deletion , Membrane Transport Proteins/genetics , Mice , Salmonella enterica/metabolism , Salmonella enterica/physiology , Time Factors , Virulence Factors/genetics
20.
FEMS Immunol Med Microbiol ; 54(1): 53-9, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18625014

ABSTRACT

Staphylococcus aureus is a pathogenic bacterium causing clinical and subclinical bovine mastitis. Infections of the udder by S. aureus are frequently associated with the presence of Staphylococcus epidermidis, an opportunistic pathogen. We reported previously that the capacity of bovine endothelial cells (BEC) to endocytize S. aureus is associated with the activation of NF-kappaB and modulated by the proinflammatory cytokines TNF-alpha and IL-1beta. In this work, we explore the ability of BEC to eliminate intracellular S. aureus and S. epidermidis and their response to these cytokines. Time-kinetics survival experiments indicated that BEC eliminate intracellular S. epidermidis more efficiently. Replication of S. aureus, but not S. epidermidis, inside BEC was evident by an increase in intracellular bacteria recovered at 2 h postinfection. Afterwards, the intracellular number of staphylococci decreased gradually, reaching the lowest value at 24 h. Treatment of BEC with TNF-alpha or IL-1beta potentiated the capacity of BEC to eliminate both Staphylococcus species at the times tested. These results indicate that activation of the intrinsic antistaphylococcal response in BEC, enhanced by TNF-alpha and IL-1beta, is effective to eliminate S. aureus and S. epidermidis and suggest that endothelial cells may play a prominent role in the defense against infections caused by these bacteria.


Subject(s)
Endothelial Cells/immunology , Endothelial Cells/microbiology , Interleukin-1beta/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus epidermidis/drug effects , Tumor Necrosis Factor-alpha/pharmacology , Animals , Cattle , Cell Line, Transformed , Cells, Cultured , Interleukin-1beta/immunology , Mastitis, Bovine/immunology , Mastitis, Bovine/microbiology , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary , Staphylococcus aureus/growth & development , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/pathogenicity , Staphylococcus epidermidis/growth & development , Staphylococcus epidermidis/isolation & purification , Staphylococcus epidermidis/pathogenicity , Tumor Necrosis Factor-alpha/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...