Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Sci Transl Med ; 16(745): eadi8214, 2024 May.
Article in English | MEDLINE | ID: mdl-38691622

ABSTRACT

Mucopolysaccharidosis type I Hurler (MPSIH) is characterized by severe and progressive skeletal dysplasia that is not fully addressed by allogeneic hematopoietic stem cell transplantation (HSCT). Autologous hematopoietic stem progenitor cell-gene therapy (HSPC-GT) provides superior metabolic correction in patients with MPSIH compared with HSCT; however, its ability to affect skeletal manifestations is unknown. Eight patients with MPSIH (mean age at treatment: 1.9 years) received lentiviral-based HSPC-GT in a phase 1/2 clinical trial (NCT03488394). Clinical (growth, measures of kyphosis and genu velgum), functional (motor function, joint range of motion), and radiological [acetabular index (AI), migration percentage (MP) in hip x-rays and MRIs and spine MRI score] parameters of skeletal dysplasia were evaluated at baseline and multiple time points up to 4 years after treatment. Specific skeletal measures were retrospectively compared with an external cohort of HSCT-treated patients. At a median follow-up of 3.78 years after HSPC-GT, all patients treated with HSPC-GT exhibited longitudinal growth within WHO reference ranges and a median height gain greater than that observed in patients treated with HSCT after 3-year follow-up. Patients receiving HSPC-GT experienced complete and earlier normalization of joint mobility compared with patients treated with HSCT. Mean AI and MP showed progressive decreases after HSPC-GT, suggesting a reduction in acetabular dysplasia. Typical spine alterations measured through a spine MRI score stabilized after HSPC-GT. Clinical, functional, and radiological measures suggested an early beneficial effect of HSPC-GT on MPSIH-typical skeletal features. Longer follow-up is needed to draw definitive conclusions on HSPC-GT's impact on MPSIH skeletal dysplasia.


Subject(s)
Genetic Therapy , Hematopoietic Stem Cell Transplantation , Mucopolysaccharidosis I , Humans , Mucopolysaccharidosis I/therapy , Mucopolysaccharidosis I/pathology , Mucopolysaccharidosis I/genetics , Male , Female , Child, Preschool , Infant , Treatment Outcome , Hematopoietic Stem Cells/metabolism , Child , Bone and Bones/pathology , Magnetic Resonance Imaging
2.
Blood ; 143(19): 1937-1952, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38446574

ABSTRACT

ABSTRACT: In physiological conditions, few circulating hematopoietic stem/progenitor cells (cHSPCs) are present in the peripheral blood, but their contribution to human hematopoiesis remain unsolved. By integrating advanced immunophenotyping, single-cell transcriptional and functional profiling, and integration site (IS) clonal tracking, we unveiled the biological properties and the transcriptional features of human cHSPC subpopulations in relationship to their bone marrow (BM) counterpart. We found that cHSPCs reduced in cell count over aging and are enriched for primitive, lymphoid, and erythroid subpopulations, showing preactivated transcriptional and functional state. Moreover, cHSPCs have low expression of multiple BM-retention molecules but maintain their homing potential after xenotransplantation. By generating a comprehensive human organ-resident HSPC data set based on single-cell RNA sequencing data, we detected organ-specific seeding properties of the distinct trafficking HSPC subpopulations. Notably, circulating multi-lymphoid progenitors are primed for seeding the thymus and actively contribute to T-cell production. Human clonal tracking data from patients receiving gene therapy (GT) also showed that cHSPCs connect distant BM niches and participate in steady-state hematopoietic production, with primitive cHSPCs having the highest recirculation capability to travel in and out of the BM. Finally, in case of hematopoietic impairment, cHSPCs composition reflects the BM-HSPC content and might represent a biomarker of the BM state for clinical and research purposes. Overall, our comprehensive work unveiled fundamental insights into the in vivo dynamics of human HSPC trafficking and its role in sustaining hematopoietic homeostasis. GT patients' clinical trials were registered at ClinicalTrials.gov (NCT01515462 and NCT03837483) and EudraCT (2009-017346-32 and 2018-003842-18).


Subject(s)
Hematopoiesis , Hematopoietic Stem Cells , Homeostasis , Animals , Humans , Mice , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Single-Cell Analysis
3.
Eur J Pediatr ; 183(3): 1137-1144, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38095717

ABSTRACT

Nutritional status plays a crucial role in the mortality rates of the pediatric oncology patients. However, there is a lack of systematic approaches for nutritional assessment in this population. This study aims to assess the current practice for nutritional assessment and care of pediatric cancer patients in Italy. A 25-items web-based, nation-wide questionnaire was circulated as of January 9, 2023 among physicians within the AIEOP network, composed of 49 national centers, out of which 21 routinely perform HCT. This survey examined the practices of 21 Italian pediatric oncology centers, revealing significant heterogeneity in nutritional practices. Only half of the centers routinely assessed all patients, utilizing different clinical and biochemical parameters. The use of neutropenic diets remained prevalent after chemotherapy or stem cell transplantation. CONCLUSION: This study underscores the pressing need for unified recommendations to improve nutritional care and potentially enhance outcomes for pediatric cancer patients. WHAT IS KNOWN: • The assessment and support of nutrition are gaining interest in the overall care of children with cancer. • The assessment and management of nutritional needs in pediatric cancer patients, including those undergoing hematopoietic cell transplantation, currently lack a systematic approach. WHAT IS NEW: • There is considerable variability in the nutritional assessment and support among Italian centers treating pediatric patients with cancer. • To enhance nutritional assessment and support for pediatric cancer patients, it is essential to establish shared national and international guidelines.


Subject(s)
Neoplasms , Nutrition Assessment , Humans , Child , Medical Oncology , Nutritional Support , Surveys and Questionnaires , Neoplasms/complications , Neoplasms/therapy , Neoplasms/epidemiology
5.
Biomedicines ; 11(7)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37509449

ABSTRACT

Vaccination with Bacillus Calmette-Guérin (BCG) can be harmful to patients with combined primary immunodeficiencies. We report the outcome of BCG vaccination in a series of twelve patients affected by adenosine deaminase deficiency (ADA-SCID). BCG vaccination resulted in a very high incidence of complications due to uncontrolled replication of the mycobacterium. All patients who developed BCG-related disease were treated successfully and remained free from recurrence of disease. We recommend the prompt initiation of enzyme replacement therapy and secondary prophylaxis to reduce the risk of BCG-related complications in ADA-SCID patients.

6.
Front Immunol ; 14: 1187959, 2023.
Article in English | MEDLINE | ID: mdl-37435083

ABSTRACT

Hemophagocytic inflammatory syndrome (HIS) is a rare form of secondary hemophagocytic lymphohistiocytosis caused by an impaired equilibrium between natural killer and cytotoxic T-cell activity, evolving in hypercytokinemia and multiorgan failure. In the context of inborn errors of immunity, HIS occurrence has been reported in severe combined immunodeficiency (SCID) patients, including two cases of adenosine deaminase deficient-SCID (ADA-SCID). Here we describe two additional pediatric cases of ADA-SCID patients who developed HIS. In the first case, HIS was triggered by infectious complications while the patient was on enzyme replacement therapy; the patient was treated with high-dose corticosteroids and intravenous immunoglobulins with HIS remission. However, the patient required HLA-identical sibling donor hematopoietic stem cell transplantation (HSCT) for a definitive cure of ADA-SCID, without HIS relapse up to 13 years after HSCT. The second patient presented HIS 2 years after hematopoietic stem cell gene therapy (GT), secondarily to Varicella-Zoster vaccination and despite CD4+ and CD8+ lymphocytes' reconstitution in line with other ADA SCID patients treated with GT. The child responded to trilinear immunosuppressive therapy (corticosteroids, Cyclosporine A, Anakinra). We observed the persistence of gene-corrected cells up to 5 years post-GT, without HIS relapse. These new cases of children with HIS, together with those reported in the literature, support the hypothesis that a major dysregulation in the immune system can occur in ADA-SCID patients. Our cases show that early identification of the disease is imperative and that a variable degree of immunosuppression could be an effective treatment while allogeneic HSCT is required only in cases of refractoriness. A deeper knowledge of immunologic patterns contributing to HIS pathogenesis in ADA-SCID patients is desirable, to identify new targeted treatments and ensure patients' long-term recovery.


Subject(s)
Agammaglobulinemia , Lymphohistiocytosis, Hemophagocytic , Severe Combined Immunodeficiency , Humans , Child , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/etiology , Lymphohistiocytosis, Hemophagocytic/therapy , Severe Combined Immunodeficiency/diagnosis , Severe Combined Immunodeficiency/therapy , Agammaglobulinemia/therapy , Cyclosporine
7.
Cells ; 12(5)2023 02 27.
Article in English | MEDLINE | ID: mdl-36899900

ABSTRACT

Necrotizing enterocolitis (NEC) is a devastating gut disease in preterm neonates. In NEC animal models, mesenchymal stromal cells (MSCs) administration has reduced the incidence and severity of NEC. We developed and characterized a novel mouse model of NEC to evaluate the effect of human bone marrow-derived MSCs (hBM-MSCs) in tissue regeneration and epithelial gut repair. NEC was induced in C57BL/6 mouse pups at postnatal days (PND) 3-6 by (A) gavage feeding term infant formula, (B) hypoxia/hypothermia, and (C) lipopolysaccharide. Intraperitoneal injections of PBS or two hBM-MSCs doses (0.5 × 106 or 1 × 106) were given on PND2. At PND 6, we harvested intestine samples from all groups. The NEC group showed an incidence of NEC of 50% compared with controls (p < 0.001). Severity of bowel damage was reduced by hBM-MSCs compared to the PBS-treated NEC group in a concentration-dependent manner, with hBM-MSCs (1 × 106) inducing a NEC incidence reduction of up to 0% (p < 0.001). We showed that hBM-MSCs enhanced intestinal cell survival, preserving intestinal barrier integrity and decreasing mucosal inflammation and apoptosis. In conclusion, we established a novel NEC animal model and demonstrated that hBM-MSCs administration reduced the NEC incidence and severity in a concentration-dependent manner, enhancing intestinal barrier integrity.


Subject(s)
Enterocolitis, Necrotizing , Infant, Newborn, Diseases , Mesenchymal Stem Cells , Animals , Mice , Infant , Infant, Newborn , Humans , Bone Marrow , Mice, Inbred C57BL , Intestines
8.
Brief Bioinform ; 24(1)2023 01 19.
Article in English | MEDLINE | ID: mdl-36545803

ABSTRACT

Longitudinal clonal tracking studies based on high-throughput sequencing technologies supported safety and long-term efficacy and unraveled hematopoietic reconstitution in many gene therapy applications with unprecedented resolution. However, monitoring patients over a decade-long follow-up entails a constant increase of large data volume with the emergence of critical computational challenges, unfortunately not addressed by currently available tools. Here we present ISAnalytics, a new R package for comprehensive and high-throughput clonal tracking studies using vector integration sites as markers of cellular identity. Once identified the clones externally from ISAnalytics and imported in the package, a wide range of implemented functionalities are available to users for assessing the safety and long-term efficacy of the treatment, here described in a clinical trial use case for Hurler disease, and for supporting hematopoietic stem cell biology in vivo with longitudinal analysis of clones over time, proliferation and differentiation. ISAnalytics is conceived to be metadata-driven, enabling users to focus on biological questions and hypotheses rather than on computational aspects. ISAnalytics can be fully integrated within laboratory workflows and standard procedures. Moreover, ISAnalytics is designed with efficient and scalable data structures, benchmarked with previous methods, and grants reproducibility and full analytical control through interactive web-reports and a module with Shiny interface. The implemented functionalities are flexible for all viral vector-based clonal tracking applications as well as genetic barcoding or cancer immunotherapies.


Subject(s)
Genetic Therapy , Hematopoietic Stem Cells , Humans , Clone Cells , Genetic Therapy/adverse effects , High-Throughput Nucleotide Sequencing , Reproducibility of Results , Clinical Trials as Topic
9.
Mol Ther ; 31(1): 230-248, 2023 01 04.
Article in English | MEDLINE | ID: mdl-35982622

ABSTRACT

Mesenchymal stromal cells (MSCs) have been employed in vitro to support hematopoietic stem and progenitor cell (HSPC) expansion and in vivo to promote HSPC engraftment. Based on these studies, we developed an MSC-based co-culture system to optimize the transplantation outcome of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene-edited (GE) human HSPCs. We show that bone marrow (BM)-MSCs produce several hematopoietic supportive and anti-inflammatory factors capable of alleviating the proliferation arrest and mitigating the apoptotic and inflammatory programs activated in GE-HSPCs, improving their expansion and clonogenic potential in vitro. The use of BM-MSCs resulted in superior human engraftment and increased clonal output of GE-HSPCs contributing to the early phase of hematological reconstitution in the peripheral blood of transplanted mice. In conclusion, our work poses the biological bases for a novel clinical use of BM-MSCs to promote engraftment of GE-HSPCs and improve their transplantation outcome.


Subject(s)
Hematopoietic Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Animals , Mice , Gene Editing , CRISPR-Cas Systems , Hematopoietic Stem Cells , Hematopoietic Stem Cell Transplantation/methods
10.
Int J Mol Sci ; 23(19)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36232472

ABSTRACT

Mucopolysaccharidosis type I (MPSI) (OMIM #252800) is an autosomal recessive disorder caused by pathogenic variants in the IDUA gene encoding for the lysosomal alpha-L-iduronidase enzyme. The deficiency of this enzyme causes systemic accumulation of glycosaminoglycans (GAGs). Although disease manifestations are typically not apparent at birth, they can present early in life, are progressive, and include a wide spectrum of phenotypic findings. Among these, the storage of GAGs within the lysosomes disrupts cell function and metabolism in the cartilage, thus impairing normal bone development and ossification. Skeletal manifestations of MPSI are often refractory to treatment and severely affect patients' quality of life. This review discusses the pathological and molecular processes leading to impaired endochondral ossification in MPSI patients and the limitations of current therapeutic approaches. Understanding the underlying mechanisms responsible for the skeletal phenotype in MPSI patients is crucial, as it could lead to the development of new therapeutic strategies targeting the skeletal abnormalities of MPSI in the early stages of the disease.


Subject(s)
Iduronidase , Mucopolysaccharidosis I , Glycosaminoglycans/metabolism , Humans , Iduronidase/genetics , Mucopolysaccharidosis I/genetics , Phenotype , Quality of Life
11.
Front Immunol ; 13: 910021, 2022.
Article in English | MEDLINE | ID: mdl-36248833

ABSTRACT

Deficiency of adenosine deaminase 2 (DADA2) is an autosomal recessive disease associated with a highly variable clinical presentation, including vasculitis, immunodeficiency, and hematologic manifestations, potentially progressing over time. The present study describes the long-term evolution of the immuno-hematological features and therapeutic challenge of two identical adult twin sisters affected by DADA2. The absence of plasmatic adenosine deaminase 2 (ADA2) activity in both twins suggested the diagnosis of DADA2, then confirmed by genetic analysis. Exon sequencing revealed a missense (p.Leu188Pro) mutation on the paternal ADA2 allele. While, whole genome sequencing identified an unreported deletion (IVS6_IVS7del*) on the maternal allele predicted to produce a transcript missing exon 7. The patients experienced the disease onset during childhood with early strokes (Patient 1 at two years, Patient 2 at eight years of age), subsequently followed by other shared DADA2-associated features, including neutropenia, hypogammaglobulinemia, reduced switched memory B cells, inverted CD4:CD8 ratio, increased naïve T cells, reduced follicular regulatory T cells, the almost complete absence of NK cells, T-large granular cell leukemia, and osteoporosis. Disease evolution differed: clinical manifestations presented several years earlier and were more pronounced in Patient 1 than in Patient 2. Due to G-CSF refractory life-threatening neutropenia, Patient 1 successfully underwent an urgent hematopoietic stem cell transplantation (HSCT) from a 9/10 matched unrelated donor. Patient 2 experienced a similar, although delayed, disease evolution and is currently on anti-TNF therapy and anti-infectious prophylaxis. The unique cases confirmed that heterozygous patients with null ADA2 activity deserve deep investigation for possible structural variants on a single allele. Moreover, this report emphasizes the importance of timely recognizing DADA2 at the onset to allow adequate follow-up and detection of disease progression. Finally, the therapeutic management in these identical twins raises significant concerns as they share a similar phenotype, with a delayed but almost predictable disease evolution in one of them, who could benefit from a prompt definitive treatment like elective allogeneic HSCT. Additional data are required to assess whether the absence of enzymatic activity at diagnosis is associated with hematological involvement and is also predictive of bone marrow dysfunction, encouraging early HSCT to improve functional outcomes.


Subject(s)
Agammaglobulinemia , Neutropenia , Polyarteritis Nodosa , Adenosine Deaminase/genetics , Agammaglobulinemia/diagnosis , Agammaglobulinemia/genetics , Granulocyte Colony-Stimulating Factor , Humans , Intercellular Signaling Peptides and Proteins , Severe Combined Immunodeficiency , Tumor Necrosis Factor Inhibitors , Twins, Monozygotic/genetics
13.
J Clin Immunol ; 42(8): 1742-1747, 2022 11.
Article in English | MEDLINE | ID: mdl-35945378

ABSTRACT

X-linked chronic granulomatous disease is a rare disease caused by mutations in the CYBB gene. While more extensive knowledge is available on genetics, pathogenesis, and possible therapeutic options, mitochondrial activity and its implications on patient monitoring are still not well-characterized. We have developed a novel protocol to study mitochondrial activity on whole blood of XCGD patients before and after transplantation, as well as on XCGD carriers. Here we present results of these analyses and of the restoration of mitochondrial activity in hyperinflamed X-linked Chronic Granulomatous Disease after hematopoietic stem cell transplantation. Moreover, we show a strong direct correlation between mitochondrial activity, chimerism, and DHR monitored before and after transplantation and in XCGD carriers. In conclusion, based on these findings, we suggest testing this new ready-to-use marker to better characterize patients before and after treatment and to investigate disease expression in carriers.


Subject(s)
Granulomatous Disease, Chronic , Hematopoietic Stem Cell Transplantation , Humans , Granulomatous Disease, Chronic/diagnosis , Granulomatous Disease, Chronic/genetics , Granulomatous Disease, Chronic/therapy , Chimerism , Phagocytes , Heterozygote
14.
Hematol Oncol Clin North Am ; 36(4): 865-878, 2022 08.
Article in English | MEDLINE | ID: mdl-35773049

ABSTRACT

Enzyme replacement therapy (ERT) and allogeneic hematopoietic stem cell transplantation (HSCT) are standard treatments for some mucopolysaccharidoses. Nevertheless, ERT is not curative, and HSCT is associated with significant mortality and morbidity, leaving a substantial disease burden of brain and skeletal manifestations. To overcome these limitations, different gene therapy (GT) strategies are under preclinical and clinical development. Data from ex-vivo GT clinical trials have demonstrated encouraging biochemical and early clinical outcomes. In-vivo GT, based on local brain delivery or systemic intravenous injections, resulted in biochemical and clinical stabilization of the disease.


Subject(s)
Hematopoietic Stem Cell Transplantation , Mucopolysaccharidoses , Cost of Illness , Enzyme Replacement Therapy/methods , Genetic Therapy/methods , Hematopoietic Stem Cell Transplantation/methods , Humans , Mucopolysaccharidoses/complications , Mucopolysaccharidoses/genetics , Mucopolysaccharidoses/therapy
15.
Br J Haematol ; 198(2): 227-243, 2022 07.
Article in English | MEDLINE | ID: mdl-35535965

ABSTRACT

Over the last 30 years, allogeneic haematopoietic stem cell transplantation (allo-HSCT) has been adopted as a therapeutic strategy for many inborn errors of metabolism (IEM), due to the ability of donor-derived cells to provide life-long enzyme delivery to deficient tissues and organs. However, (a) the clinical benefit of allo-HSCT is limited to a small number of IEM, (b) patients are left with a substantial residual disease burden and (c) allo-HSCT is still associated with significant short- and long-term toxicities and transplant-related mortality. Haematopoietic stem/progenitor cell gene therapy (HSPC-GT) was established in the 1990s for the treatment of selected monogenic primary immunodeficiencies and over the past few years, its use has been extended to a number of IEM. HSPC-GT is particularly attractive in neurodegenerative IEM, as gene corrected haematopoietic progenitors can deliver supra-physiological enzyme levels to difficult-to-reach areas, such as the brain and the skeleton, with potential increased clinical benefit. Moreover, HSPC-GT is associated with reduced morbidity and mortality compared to allo-HSCT, although this needs to be balanced against the potential risk of insertional mutagenesis. The number of clinical trials in the IEM field is rapidly increasing and some HSPC-GT products recently received market approval. This review describes the development of ex vivo HSPC-GT in a number of IEM, with a focus on recent results from GT clinical trials and risks versus benefits considerations, when compared to established therapeutic strategies, such as allo-HSCT.


Subject(s)
Hematopoietic Stem Cell Transplantation , Metabolism, Inborn Errors , Genetic Therapy , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells , Humans , Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/therapy , Transplantation, Homologous
16.
Blood ; 140(14): 1635-1649, 2022 10 06.
Article in English | MEDLINE | ID: mdl-35344580

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (HSCT) is the gold standard curative therapy for infants and children with many inborn errors of immunity (IEI), but adolescents and adults with IEI are rarely referred for transplant. Lack of published HSCT outcome data outside small, single-center studies and perceived high risk of transplant-related mortality have delayed the adoption of HSCT for IEI patients presenting or developing significant organ damage later in life. This large retrospective, multicenter HSCT outcome study reports on 329 IEI patients (age range, 15-62.5 years at HSCT). Patients underwent first HSCT between 2000 and 2019. Primary endpoints were overall survival (OS) and event-free survival (EFS). We also evaluated the influence of IEI-subgroup and IEI-specific risk factors at HSCT, including infections, bronchiectasis, colitis, malignancy, inflammatory lung disease, splenectomy, hepatic dysfunction, and systemic immunosuppression. At a median follow-up of 44.3 months, the estimated OS at 1 and 5 years post-HSCT for all patients was 78% and 71%, and EFS was 65% and 62%, respectively, with low rates of severe acute (8%) or extensive chronic (7%) graft-versus-host disease. On univariate analysis, OS and EFS were inferior in patients with primary antibody deficiency, bronchiectasis, prior splenectomy, hepatic comorbidity, and higher hematopoietic cell transplant comorbidity index scores. On multivariable analysis, EFS was inferior in those with a higher number of IEI-associated complications. Neither age nor donor had a significant effect on OS or EFS. We have identified age-independent risk factors for adverse outcome, providing much needed evidence to identify which patients are most likely to benefit from HSCT.


Subject(s)
Bronchiectasis , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Adolescent , Adult , Bronchiectasis/etiology , Child , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Infant , Middle Aged , Retrospective Studies , Transplantation, Homologous , Young Adult
18.
Clin Exp Dent Res ; 8(1): 28-36, 2022 02.
Article in English | MEDLINE | ID: mdl-35199474

ABSTRACT

OBJECTIVE: Wiskott-Aldrich syndrome (WAS) is a rare X-linked primary immunodeficiency, characterized by micro-thrombocytopenia, recurrent infections, and eczema. This study aims to describe common oral manifestations and evaluate oral microbioma of WAS patients. MATERIAL AND METHODS: In this cohort study, 11 male WAS patients and 16 male healthy controls were evaluated in our Center between 2010 and 2018. Data about clinical history, oral examination, Gingival Index (GI) and Plaque Index (PI) were collected from both groups. Periodontal microbiological flora was evaluated on samples of the gingival sulcus. RESULTS: WAS subjects presented with premature loss of deciduous and permanent teeth, inclusions, eruption disturbance, and significantly worse GI and PI. They also showed a trend toward a higher total bacterial load. Fusobacterium nucleatum, reported to contribute to periodontitis onset, was the most prevalent bacteria, together with Porphyromonas gingivalis and Tannerella forsythia. CONCLUSIONS: Our data suggest that WAS patients are at greater risk of alterations in the oral cavity. The statistically higher incidence of periodontitis and the trend to higher prevalence of potentially pathological bacterial species in our small cohort, that should be confirmed in future in a larger population, underline the importance of dentistry monitoring as part of the multidisciplinary management of WAS patients.


Subject(s)
Microbiota , Periodontitis , Wiskott-Aldrich Syndrome , Aggregatibacter actinomycetemcomitans , Child , Cohort Studies , Female , Humans , Male , Periodontitis/epidemiology , Periodontitis/microbiology , Prevotella intermedia
19.
Blood ; 139(13): 2066-2079, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35100336

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative treatment for patients affected by Wiskott-Aldrich syndrome (WAS). Reported HSCT outcomes have improved over time with respect to overall survival, but some studies have identified older age and HSCT from alternative donors as risk factors predicting poorer outcome. We analyzed 197 patients undergoing transplant at European Society for Blood and Marrow Transplantation centers between 2006 and 2017 who received conditioning as recommended by the Inborn Errors Working Party (IEWP): either busulfan (n = 103) or treosulfan (n = 94) combined with fludarabine ± thiotepa. After a median follow-up post-HSCT of 44.9 months, 176 patients were alive, resulting in a 3-year overall survival of 88.7% and chronic graft-versus-host disease (GVHD)-free survival (events include death, graft failure, and severe chronic GVHD) of 81.7%. Overall survival and chronic GVHD-free survival were not significantly affected by conditioning regimen (busulfan- vs treosulfan-based), donor type (matched sibling donor/matched family donor vs matched unrelated donor/mismatched unrelated donor vs mismatched family donor), or period of HSCT (2006-2013 vs 2014-2017). Patients aged <5 years at HSCT had a significantly better overall survival. The overall cumulative incidences of grade III to IV acute GVHD and extensive/moderate/severe chronic GVHD were 6.6% and 2.1%, respectively. Patients receiving treosulfan-based conditioning had a higher incidence of graft failure and mixed donor chimerism and more frequently underwent secondary procedures (second HSCT, unconditioned stem cell boost, donor lymphocyte infusion, or splenectomy). In summary, HSCT for WAS with conditioning regimens currently recommended by IEWP results in excellent survival and low rates of GVHD, regardless of donor or stem cell source, but age ≥5 years remains a risk factor for overall survival.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Wiskott-Aldrich Syndrome , Busulfan/therapeutic use , Child, Preschool , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Retrospective Studies , Tissue Donors , Transplantation Conditioning/methods , Treatment Outcome , Wiskott-Aldrich Syndrome/therapy
20.
Lancet ; 399(10322): 372-383, 2022 01 22.
Article in English | MEDLINE | ID: mdl-35065785

ABSTRACT

BACKGROUND: Effective treatment for metachromatic leukodystrophy (MLD) remains a substantial unmet medical need. In this study we investigated the safety and efficacy of atidarsagene autotemcel (arsa-cel) in patients with MLD. METHODS: This study is an integrated analysis of results from a prospective, non-randomised, phase 1/2 clinical study and expanded-access frameworks. 29 paediatric patients with pre-symptomatic or early-symptomatic early-onset MLD with biochemical and molecular confirmation of diagnosis were treated with arsa-cel, a gene therapy containing an autologous haematopoietic stem and progenitor cell (HSPC) population transduced ex vivo with a lentiviral vector encoding human arylsulfatase A (ARSA) cDNA, and compared with an untreated natural history (NHx) cohort of 31 patients with early-onset MLD, matched by age and disease subtype. Patients were treated and followed up at Ospedale San Raffaele, Milan, Italy. The coprimary efficacy endpoints were an improvement of more than 10% in total gross motor function measure score at 2 years after treatment in treated patients compared with controls, and change from baseline of total peripheral blood mononuclear cell (PBMC) ARSA activity at 2 years after treatment compared with values before treatment. This phase 1/2 study is registered with ClinicalTrials.gov, NCT01560182. FINDINGS: At the time of analyses, 26 patients treated with arsa-cel were alive with median follow-up of 3·16 years (range 0·64-7·51). Two patients died due to disease progression and one due to a sudden event deemed unlikely to be related to treatment. After busulfan conditioning, all arsa-cel treated patients showed sustained multilineage engraftment of genetically modified HSPCs. ARSA activity in PBMCs was significantly increased above baseline 2 years after treatment by a mean 18·7-fold (95% CI 8·3-42·2; p<0·0001) in patients with the late-infantile variant and 5·7-fold (2·6-12·4; p<0·0001) in patients with the early-juvenile variant. Mean differences in total scores for gross motor function measure between treated patients and age-matched and disease subtype-matched NHx patients 2 years after treatment were significant for both patients with late-infantile MLD (66% [95% CI 48·9-82·3]) and early-juvenile MLD (42% [12·3-71·8]). Most treated patients progressively acquired motor skills within the predicted range of healthy children or had stabilised motor performance (maintaining the ability to walk). Further, most displayed normal cognitive development and prevention or delay of central and peripheral demyelination and brain atrophy throughout follow-up; treatment benefits were particularly apparent in patients treated before symptom onset. The infusion was well tolerated and there was no evidence of abnormal clonal proliferation or replication-competent lentivirus. All patients had at least one grade 3 or higher adverse event; most were related to conditioning or to background disease. The only adverse event related to arsa-cel was the transient development of anti-ARSA antibodies in four patients, which did not affect clinical outcomes. INTERPRETATION: Treatment with arsa-cel resulted in sustained, clinically relevant benefits in children with early-onset MLD by preserving cognitive function and motor development in most patients, and slowing demyelination and brain atrophy. FUNDING: Orchard Therapeutics, Fondazione Telethon, and GlaxoSmithKline.


Subject(s)
Cerebroside-Sulfatase/genetics , Hematopoietic Stem Cell Transplantation , Lentivirus/genetics , Leukodystrophy, Metachromatic , Age of Onset , Child , Child, Preschool , Female , Genetic Therapy , Genetic Vectors , Humans , Italy , Leukodystrophy, Metachromatic/genetics , Leukodystrophy, Metachromatic/therapy , Male , Prospective Studies , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...