Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Toxicol Methods ; 119: 107208, 2023.
Article in English | MEDLINE | ID: mdl-35944806

ABSTRACT

Compound-mediated locomotion changes, conducted via open field infrared photobeam breaks, are an important common component of neurological assessments conducted in safety pharmacology studies. In addition to open field locomotor activity assessments, activity data (derived from changes in signal strength) from cardiovascular (CV) telemetry studies can also be an alternative method potentially used to assess locomotor effects. However, comparisons of these two methods have not been extensively characterized. The goal of this work was to compare these two methodologies to assess activity in rats using reference compounds known to have central nervous system (CNS)-stimulant (preladenant) or CNS-depressant (chlorpromazine) effects. Open field activity was conducted using the Kinder Scientific Motor Monitor system and data were collected for 30 min at each drug's expected time of maximum plasma exposure (Tmax). Telemetry-based CV assessment data were continuously acquired using DSI radiotelemetry instrumented animals for 24 h postdose (HPD). Drugs were administered during the lights-on period for both study types. Administration of preladenant caused increases in activity within 0.5-2 HPD for both methods. While administration of chlorpromazine caused decreases in activity in the infrared beam-based open field assessment (1.0-1.5 HPD), there was no effect on telemetry-derived activity during a similar time period. However, telemetry-derived decreases in activity were observed during the lights-off period (16-20 HPD), suggesting CNS-depressant compounds may be mischaracterized if the optimal dose administration time is not selected based on the light/dark cycle and pharmacokinetics. Overall, these results suggest that telemetry-based activity assessment is capable of detecting CNS-stimulant effects of compounds.


Subject(s)
Cardiovascular System , Central Nervous System Stimulants , Rats , Animals , Rats, Wistar , Chlorpromazine , Central Nervous System Stimulants/pharmacology , Telemetry/methods
2.
J Pharmacol Toxicol Methods ; 88(Pt 1): 64-71, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28658603

ABSTRACT

The purpose of this study was to evaluate functional measures of diminished sympathetic activity after postganglionic neuronal loss in the conscious rat. To produce variable degrees of sympathetic postganglionic neuronal loss, adult rats were treated daily with toxic doses of guanethidine (100mg/kg) for either 5days or 11days, followed by a recovery period of at least 18days. Heart rate, blood pressure, cardiac baroreflex responsiveness, urinalysis (for catecholamine metabolite, 3-methoxy-4-hydroxyphenylethylenglycol; MHPG), and pupillometry were performed during the recovery period. At the end of the recovery period stereology of superior cervical ganglia (SCG) was performed to determine the degree of neuronal loss. Total number of SCG neurons was correlated to physiological outcomes using regression analysis. Whereas guanethidine treatment for 11days caused significant reduction in the number of neurons (15,646±1460 vs. 31,958±1588), guanethidine treatment for 5days caused variable levels of neuronal depletion (26,009±3518). Regression analysis showed that only changes in urinary MHPG levels and systolic blood pressure significantly correlated with reduction of SCG neurons (r2=0.45 and 0.19, both p<0.05). Although cardiac baroreflex-induced reflex tachycardia (345.7±19.6 vs. 449.7±20.3) and pupil/iris ratio (0.50±0.03% vs. 0.61±0.02%) were significantly attenuated in the 11-day guanethidine treated rats there was no significant relationship between these measurements and the number of remaining SCG neurons after treatment (p>0.05). These data suggest that basal systolic blood pressure and urinary MHPG levels predict drug-induced depletion of sympathetic activity in vivo.


Subject(s)
Guanethidine/toxicity , Neurons/drug effects , Superior Cervical Ganglion/drug effects , Sympatholytics/toxicity , Toxicity Tests, Acute/methods , Animals , Baroreflex/drug effects , Blood Pressure/drug effects , Catecholamines/metabolism , Consciousness , Heart Rate/drug effects , Male , Methoxyhydroxyphenylglycol/urine , Rats , Rats, Sprague-Dawley
3.
Front Pharmacol ; 4: 115, 2013.
Article in English | MEDLINE | ID: mdl-24133446

ABSTRACT

The mineralocorticoid receptor (MR) antagonists PF-03882845 and eplerenone were evaluated for renal protection against aldosterone-mediated renal disease in uninephrectomized Sprague-Dawley (SD) rats maintained on a high salt diet and receiving aldosterone by osmotic mini-pump for 27 days. Serum K(+) and the urinary albumin to creatinine ratio (UACR) were assessed following 14 and 27 days of treatment. Aldosterone induced renal fibrosis as evidenced by increases in UACR, collagen IV staining in kidney cortex, and expression of pro-fibrotic genes relative to sham-operated controls not receiving aldosterone. While both PF-03882845 and eplerenone elevated serum K(+) levels with similar potencies, PF-03882845 was more potent than eplerenone in suppressing the rise in UACR. PF-03882845 prevented the increase in collagen IV staining at 5, 15 and 50 mg/kg BID while eplerenone was effective only at the highest dose tested (450 mg/kg BID). All doses of PF-03882845 suppressed aldosterone-induced increases in collagen IV, transforming growth factor-ß 1 (Tgf-ß 1), interleukin-6 (Il-6), intermolecular adhesion molecule-1 (Icam-1) and osteopontin gene expression in kidney while eplerenone was only effective at the highest dose. The therapeutic index (TI), calculated as the ratio of the EC50 for increasing serum K(+) to the EC50 for UACR lowering, was 83.8 for PF-03882845 and 1.47 for eplerenone. Thus, the TI of PF-03882845 against hyperkalemia was 57-fold superior to that of eplerenone indicating that PF-03882845 may present significantly less risk for hyperkalemia compared to eplerenone.

4.
Bioorg Med Chem Lett ; 23(10): 3059-63, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23566514

ABSTRACT

The synthesis and biological evaluation of novel Tie-2 kinase inhibitors are presented. Based on the pyrrolopyrimidine chemotype, several new series are described, including the benzimidazole series by linking a benzimidazole to the C5-position of the 4-amino-pyrrolopyrimidine core and the ketophenyl series synthesized by incorporating a ketophenyl group to the C5-position. Medicinal chemistry efforts led to potent Tie-2 inhibitors. Compound 15, a ketophenyl pyrrolopyrimidine urea analog with improved physicochemical properties, demonstrated favorable in vitro attributes as well as dose responsive and robust oral tumor growth inhibition in animal models.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Drug Discovery , Neoplasms/drug therapy , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Receptor, TIE-2/antagonists & inhibitors , Animals , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Humans , Male , Molecular Structure , Neoplasms/enzymology , Neoplasms/pathology , Protein Kinase Inhibitors/administration & dosage , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrroles/chemical synthesis , Pyrroles/chemistry , Rats , Rats, Sprague-Dawley , Receptor, TIE-2/metabolism , Structure-Activity Relationship , Xenograft Model Antitumor Assays
5.
J Med Chem ; 53(12): 4615-22, 2010 Jun 24.
Article in English | MEDLINE | ID: mdl-20481595

ABSTRACT

This paper describes the design and synthesis of novel, ATP-competitive Akt inhibitors from an elaborated 3-aminopyrrolidine scaffold. Key findings include the discovery of an initial lead that was modestly selective and medicinal chemistry optimization of that lead to provide more selective analogues. Analysis of the data suggested that highly lipophilic analogues would likely suffer from poor overall properties. Central to the discussion is the concept of optimization of lipophilic efficiency and the ability to balance overall druglike propeties with the careful control of lipophilicity in the lead series. Discovery of the nonracemic amide series and subsequent modification produced an advanced analogue that performed well in advanced preclinical assays, including xenograft tumor growth inhibition studies, and this analogue was nominated for clinical development.


Subject(s)
Adenosine Triphosphate/physiology , Amides/chemical synthesis , Aminoquinolines/chemical synthesis , Antineoplastic Agents/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Amides/pharmacokinetics , Amides/pharmacology , Aminoquinolines/pharmacokinetics , Aminoquinolines/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Dogs , Mice , Models, Molecular , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Rats , Stereoisomerism , Structure-Activity Relationship , Xenograft Model Antitumor Assays
6.
Mol Cancer Ther ; 9(4): 883-94, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20354118

ABSTRACT

The Aurora family of highly related serine/threonine kinases plays a key role in the regulation of mitosis. Aurora1 and Aurora2 play important but distinct roles in the G(2) and M phases of the cell cycle and are essential for proper chromosome segregation and cell division. Overexpression and amplification of Aurora2 have been reported in different tumor types, including breast, colon, pancreatic, ovarian, and gastric cancer. PF-03814735 is a novel, potent, orally bioavailable, reversible inhibitor of both Aurora1 and Aurora2 kinases that is currently in phase I clinical trials for the treatment of advanced solid tumors. In intact cells, the inhibitory activity of PF-03814735 on the Aurora1 and Aurora2 kinases reduces levels of phospho-Aurora1, phosphohistone H3, and phospho-Aurora2. PF-03814735 produces a block in cytokinesis, resulting in inhibition of cell proliferation and the formation of polyploid multinucleated cells. Although PF-03814735 produces significant inhibition of several other protein kinases, the predominant biochemical effects in cellular assays are consistent with inhibition of Aurora kinases. Once-daily oral administration of PF-03814735 to mice bearing human xenograft tumors produces a reduction in phosphohistone H3 in tumors at doses that are tolerable and that result in significant inhibition of tumor growth. The combination of PF-03814735 and docetaxel in xenograft mouse tumor models shows additive tumor growth inhibition. These results support the clinical evaluation of PF-03814735 in cancer patients. Mol Cancer Ther; 9(4); 883-94. (c)2010 AACR.


Subject(s)
Heterocyclic Compounds, 3-Ring/pharmacokinetics , Heterocyclic Compounds, 3-Ring/therapeutic use , Neoplasms/drug therapy , Neoplasms/enzymology , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrimidines/pharmacokinetics , Pyrimidines/therapeutic use , Administration, Oral , Animals , Aurora Kinases , Biological Availability , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Heterocyclic Compounds, 3-Ring/administration & dosage , Heterocyclic Compounds, 3-Ring/pharmacology , Histones/metabolism , Humans , Mice , Mice, Nude , Neoplasms/pathology , Phosphorylation/drug effects , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/metabolism , Pyrimidines/administration & dosage , Pyrimidines/pharmacology , Substrate Specificity/drug effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...