Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 11(11)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-38004651

ABSTRACT

The increased prevalence of multidrug-resistant organisms (MDROs), healthcare associated infections (HAIs), and the recent COVID-19 pandemic has caused the photoinactivation industry to explore alternative wavelengths. Blue light (BL405) has gained significant interest as it is much less harmful to the skin and eyes than traditional germicidal wavelengths; therefore, in theory, it can be used continuously with human exposure. At present, the viricidal effects of BL405 are largely unknown as the literature predominately addresses bacterial disinfection performed with this wavelength. This work provides novel findings to the industry, reporting on the virucidal effects of BL405 on surfaces. This research utilizes three surfaces: ceramic, PTFE, and stainless steel. The efficacy of BL405 inactivation varied by surface type, which was due to surface characteristics, such as the contact angle, porosity, zeta potential, and reflectivity. Additionally, the effect of the dew point on BL405 inactivation efficacy was determined. This research is the first to study the effects of the dew point on the virucidal effectiveness of BL405 surface inactivation. The effects of the dew point were significant for all surfaces and the control experiments. The high-dew-point conditions (18 °C) yielded higher levels of BL405 inactivation and viral degradation for the experiments and controls, respectively.

2.
Microorganisms ; 11(9)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37764001

ABSTRACT

The COVID-19 pandemic highlighted the limitations in scientific and engineering understanding of applying germicidal UV to surfaces. This study combines surface characterization, viral retention, and the related UV dose response to evaluate the effectiveness of UV254 as a viral inactivation technology on five surfaces: aluminum, ceramic, Formica laminate, PTFE and stainless steel. Images of each surface were determined using SEM (Scanning Electron Microscopy), which produced a detailed characterization of the surfaces at a nanometer scale. From the SEM images, the surface porosity of each material was calculated. Through further analysis, it was determined that surface porosity, surface roughness, contact angle, and zeta potential correlate to viral retention on the material. The imaging revealed that the aluminum surface, after repeated treatment, is highly oxidized, increasing surface area and surface porosity. These interactions are important as they prevent the recovery of MS-2 without exposure to UV254. The dose response curve for PTFE was steeper than ceramic, Formica laminate and stainless steel, as inactivation to the detection limit was achieved at 25 mJ/cm2. These findings are consistent with well-established literature indicating UV reflectivity of PTFE is maximized. Statistical testing reinforced that the efficacy of UV254 for surface inactivation varies by surface type.

3.
Appl Environ Microbiol ; 88(19): e0122122, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36129288

ABSTRACT

The objective of this study was to evaluate the effectiveness of UV technology for virus disinfection to allow FFR reuse. UV is a proven decontamination tool for microbial pathogens, including the SARS-CoV-2 virus. Research findings suggest that the impacts of UV-C treatment on FFR material degradation should be confirmed using microbial surrogates in addition to the commonly performed abiotic particle testing. This study used the surrogates, E. coli and MS-2 bacteriophage, as they bracket the UV response of SARS-CoV-2. Lower log inactivation was observed on FFRs than predicted by aqueous-based UV dose-response data for MS-2 bacteriophage and E. coli. In addition, the dose-response curves did not follow the trends commonly observed with aqueous data for E. coli and MS-2. The dose-response curves for the respirators in this study had a semicircle shape, where the inactivation reached a peak and then decreased. This decrease in UV inactivation is thought to be due to the degradation of the fibers of the FFR and allows for more viral and bacterial cells to wash through the layers of the respirator. This degradation phenomenon was observed at UV doses at and above 2,000 mJ/cm2. Results have demonstrated that FFR materials yield various results in terms of effective disinfection in experiments conducted on KN95 and N95 face respirators. The highest inactivation for both surrogates was observed with the KN95 respirator made by Purism, yielding 3 and 2.75 log inactivation for E. coli and MS-2 at UV doses of 1,500 mJ/cm2. The KN95 made by Anboruo yielded the lowest inactivation for MS-2 at 0.75 log when exposed to 1,000 mJ/cm2. To further test the degradation theory, experiments used a collimated beam device to test the hypothesis further that degradation is occurring at and above UV doses of 1,500 mJ/cm2. The experiment aimed to determine the effect of "predosing" a respirator with UV before inoculating the respirator with MS-2. In this test, quantification of the penetrated irradiance value and the ability of each layer to retain MS-2 were quantified. The results of the experiments varied from the intact FFR degradation experiments but displayed some data to support the degradation theory. IMPORTANCE Research suggests degradation of FFR materials at high UV doses is important. There appears to be a peak inactivation dose at approximately 1,500 mJ/cm2. The subsequent dose increases appear to have the reverse effect on inactivation values; these trends have shown true with both the N95 and KN95-Purism respirators.


Subject(s)
COVID-19 , Disinfection , COVID-19/prevention & control , Decontamination/methods , Disinfection/methods , Escherichia coli , Humans , N95 Respirators , SARS-CoV-2 , Ultraviolet Rays , Ventilators, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...