Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biomicrofluidics ; 15(1): 014105, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33537112

ABSTRACT

Separation and sorting of biological entities (viruses, bacteria, and cells) is a critical step in any microfluidic lab-on-a-chip device. Acoustofluidics platforms have demonstrated their ability to use physical characteristics of cells to perform label-free separation. Bandpass-type sorting methods of medium-sized entities from a mixture have been presented using acoustic techniques; however, they require multiple transducers, lack support for various target populations, can be sensitive to flow variations, or have not been verified for continuous flow sorting of biological cells. To our knowledge, this paper presents the first acoustic bandpass method that overcomes all these limitations and presents an inherently reconfigurable technique with a single transducer pair for stable continuous flow sorting of blood cells. The sorting method is first demonstrated for polystyrene particles of sizes 6, 10, and 14.5 µm in diameter with measured purity and efficiency coefficients above 75 ± 6% and 85 ± 9%, respectively. The sorting strategy was further validated in the separation of red blood cells from white blood cells and 1 µm polystyrene particles with 78 ± 8% efficiency and 74 ± 6% purity, respectively, at a flow rate of at least 1 µl/min, enabling to process finger prick blood samples within minutes.

2.
Ultrasonics ; 104: 106111, 2020 May.
Article in English | MEDLINE | ID: mdl-32146382

ABSTRACT

The deposition of increased volumes of Cu down an interconnect through-hole via (THV) of a Printed Circuit Board (PCB) is highly desirable for the fabrication of increasing component density and PCB stacks. A quality metric, called micro-throwing power, characterises the volume of Cu that can be deposited within a THV. In this paper, we analyse the influence of 1 ± 0.05 MHz megasonic (MS) assisted agitation applied to copper (Cu) electroplating baths on the micro-throwing ability of a standard, non-filling Cu electroplating solution. Our results indicate that megasonic agitation is shown to increase the Cu deposition volume within a THV by 45% for an increase of MS pressure from 225 W to 450 W, highlighting the significance of acoustic pressure as a key parameter to control MS THV plating volume. Bulk fluid flow rate within a 500 L plating tank is shown to increase by 150% due to Eckhart acoustic streaming mechanisms, compared to existing bath agitation techniques and panel movement. From MS plating experiments and COMSOLTM finite element acoustic scattering simulations, transducer orientation is shown to influence plating performance, with higher-order acoustic resonant modes forming within THVs identified as the cause. Simulations indicate that higher potential acoustic energy was coupled into a 0.200 mm diameter THV cavity, width-to-length aspect ratio (ar): 8:1, than a larger cavity of diameter 0.475 mm, ar 3.4:1. The maximum acoustic energy coupled into THV cavity is observed for a wavefront propagating along the axis of the cavity entrance, indicating an ideal alignment for the MS plating setup.

3.
Micromachines (Basel) ; 10(7)2019 Jun 29.
Article in English | MEDLINE | ID: mdl-31261902

ABSTRACT

Two numerical methods based on the Finite Element Method are presented for calculating the secondary acoustic radiation force between interacting spherical particles. The first model only considers the acoustic waves scattering off a single particle, while the second model includes re-scattering effects between the two interacting spheres. The 2D axisymmetric simplified model combines the Gor'kov potential approach with acoustic simulations to find the interacting forces between two small compressible spheres in an inviscid fluid. The second model is based on 3D simulations of the acoustic field and uses the tensor integral method for direct calculation of the force. The results obtained by both models are compared with analytical equations, showing good agreement between them. The 2D and 3D models take, respectively, seconds and tens of seconds to achieve a convergence error of less than 1%. In comparison with previous models, the numerical methods presented herein can be easily implemented in commercial Finite Element software packages, where surface integrals are available, making it a suitable tool for investigating interparticle forces in acoustic manipulation devices.

4.
Sensors (Basel) ; 18(8)2018 Aug 13.
Article in English | MEDLINE | ID: mdl-30104478

ABSTRACT

This article reviews existing clinical practices and sensor research undertaken to monitor fetal well-being during labour. Current clinical practices that include fetal heart rate monitoring and fetal scalp blood sampling are shown to be either inadequate or time-consuming. Monitoring of lactate in blood is identified as a potential alternative for intrapartum fetal monitoring due to its ability to distinguish between different types of acidosis. A literature review from a medical and technical perspective is presented to identify the current advancements in the field of lactate sensors for this application. It is concluded that a less invasive and a more continuous monitoring device is required to fulfill the clinical needs of intrapartum fetal monitoring. Potential specifications for such a system are also presented in this paper.


Subject(s)
Acidosis/diagnosis , Fetal Hypoxia/diagnosis , Fetal Monitoring/instrumentation , Labor, Obstetric , Female , Humans , Lactic Acid/blood , Pregnancy , Scalp
5.
Ultrason Sonochem ; 42: 434-444, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29429689

ABSTRACT

In this research experimental and simulated analysis investigates the influence of megasonic (MS; 1 ±â€¯0.05 MHz) acoustic-assisted electroplating techniques, with respect to the fabrication of through-hole via (THV) and blind-via (BV) interconnects for the Printed Circuit Board (PCB) industry. MS plating of copper down THV and BV interconnects was shown to produce measurable benefits such as increased connectivity throughout a PCB and cost savings. More specifically, a 700% increase of copper plating rate was demonstrated for THVs of 175 µm diameter and depth-to-width aspect ratio (ar) of 5.7:1, compared with electrodeposition under no-agitation conditions. For BVs, a 60% average increase in copper thickness deposition in 150 µm and 200 µm, ar 1:1, was demonstrated against plating under standard manufacturing conditions including bubble agitation and panel movement. Finite element modelling simulations of acoustic scattering revealed 1st harmonic influence for plating rate enhancement.

6.
Biomicrofluidics ; 11(5): 054115, 2017 Sep.
Article in English | MEDLINE | ID: mdl-29152026

ABSTRACT

High efficiency isolation of cells or particles from a heterogeneous mixture is a critical processing step in lab-on-a-chip devices. Acoustic techniques offer contactless and label-free manipulation, preserve viability of biological cells, and provide versatility as the applied electrical signal can be adapted to various scenarios. Conventional acoustic separation methods use time-of-flight and achieve separation up to distances of quarter wavelength with limited separation power due to slow gradients in the force. The method proposed here allows separation by half of the wavelength and can be extended by repeating the modulation pattern and can ensure maximum force acting on the particles. In this work, we propose an optimised phase modulation scheme for particle separation in a surface acoustic wave microfluidic device. An expression for the acoustic radiation force arising from the interaction between acoustic waves in the fluid was derived. We demonstrated, for the first time, that the expression of the acoustic radiation force differs in surface acoustic wave and bulk devices, due to the presence of a geometric scaling factor. Two phase modulation schemes are investigated theoretically and experimentally. Theoretical findings were experimentally validated for different mixtures of polystyrene particles confirming that the method offers high selectivity. A Monte-Carlo simulation enabled us to assess performance in real situations, including the effects of particle size variation and non-uniform acoustic field on sorting efficiency and purity, validating the ability to separate particles with high purity and high resolution.

7.
J Acoust Soc Am ; 141(6): 4148, 2017 06.
Article in English | MEDLINE | ID: mdl-28618830

ABSTRACT

Levitation and manipulation of objects by sound waves have a wide range of applications in chemistry, biology, material sciences, and engineering. However, the current acoustic levitation techniques are mainly restricted to particles that are much smaller than the acoustic wavelength. In this work, it is shown that acoustic standing waves can be employed to stably levitate an object much larger than the acoustic wavelength in air. The levitation of a large slightly curved object weighting 2.3 g is demonstrated by using a device formed by two 25 kHz ultrasonic Langevin transducers connected to an aluminum plate. The sound wave emitted by the device provides a vertical acoustic radiation force to counteract gravity and a lateral restoring force that ensure horizontal stability to the levitated object. In order to understand the levitation stability, a numerical model based on the finite element method is used to determine the acoustic radiation force that acts on the object.

8.
Article in English | MEDLINE | ID: mdl-28113660

ABSTRACT

This paper presents a contactless, acoustic technique to manipulate and sort particles of varying size in both liquid and air media. An acoustic standing wave is generated by the superposition of counterpropagating waves emitted by two opposing emitters. The acoustic radiation force traps the smallest particles at the pressure nodes of the acoustic standing wave. The position of the particles can be manipulated by dynamically changing the phase difference between the two emitters. By applying a dynamic acoustic field (DAF), it is demonstrated that particles can be manipulated spatially and sorted according to size. The discrimination (sorting dynamic range) capability is initially demonstrated in liquid media by separating three different sets of polystyrene particles, ranging in size from 5 to 45µm in diameter. The separation between particles was performed up to a ratio of 5/6 in diameter (20% diameter difference). Finally, the scalability of the DAF method is demonstrated by sorting expanded polystyrene particles of 2 and 5 mm diameter in air.

9.
Article in English | MEDLINE | ID: mdl-22899129

ABSTRACT

High-frequency ultrasound is needed for medical imaging with high spatial resolution. A key issue in the development of ultrasound imaging arrays to operate at high frequencies (≥30 MHz) is the need for photolithographic patterning of array electrodes. To achieve this directly on 1-3 piezocomposite, the material requires not only planar, parallel, and smooth surfaces, but also an epoxy composite filler that is resistant to chemicals, heat, and vacuum. This paper reports, first, on the surface finishing of 1-3 piezocomposite materials by lapping and polishing. Excellent surface flatness has been obtained, with an average surface roughness of materials as low as 3 nm and step heights between ceramic/polymer of ∼80 nm. Subsequently, high-frequency array elements were patterned directly on top of these surfaces using a photolithography process. A 30-MHz linear array electrode pattern with 50-µm element pitch has been patterned on the lapped and polished surface of a high-frequency 1-3 piezocomposite. Excellent electrode edge definition and electrical contact to the composite were obtained. The composite has been lapped to a final thickness of ∼55 µm. Good adhesion of electrodes on the piezocomposite has been achieved and electrical impedance measurements have demonstrated their basic functionality. The array was then packaged, and acoustic pulse-echo measurements were performed. These results demonstrate that direct patterning of electrodes by photolithography on 1-3 piezocomposite is feasible for fabrication of high-frequency ultrasound arrays. Furthermore, this method is more conducive to mass production than other reported array fabrication techniques.


Subject(s)
Transducers , Ultrasonography/instrumentation , Aluminum Oxide/chemistry , Electric Impedance , Electrodes , Microtechnology/instrumentation
10.
Article in English | MEDLINE | ID: mdl-21989876

ABSTRACT

An acoustic particle manipulation system is presented, using a flexible printed circuit board formed into a regular heptagon. It is operated at 4 MHz and has a side dimension of 10 mm. The heptagonal geometry was selected for its asymmetry, which tends to reduce standing wave behavior. This leads to the possibility of having fine control over the acoustic field by varying the output phases of the transducer elements. Configurations with two and three active transducers are demonstrated experimentally. It is shown that with two transducers, the particles align along straight lines, the position of which can be moved by varying the relative excitation phases of the two transducers. With three active transducers, hexagonal-shaped patterns are obtained that can also be moved, again according to the phase of the excitation signals. Huygens' principle-based simulations were used to investigate the resultant pressure distributions. Good agreement was achieved between these simulations and both Schlieren imaging and particle manipulation observations.


Subject(s)
Micromanipulation/instrumentation , Micromanipulation/methods , Microspheres , Acoustics , Computer Simulation , Equipment Design , Lead/chemistry , Titanium/chemistry , Transducers , Zirconium/chemistry
11.
Article in English | MEDLINE | ID: mdl-23443710

ABSTRACT

Miniature ultrasound transducer arrays that can operate at frequencies above 30 MHz are needed for high-resolution medical imaging. One way to achieve this is with a kerfless structure based on 1-3 connectivity piezocomposite with the electrodes defined by photolithography. To achieve this, not only does the composite need planar, parallel, and smooth surfaces, but it must also be made with an epoxy filler compatible with the chemicals, heat, and vacuum required for photolithography. This paper reports full characterization of an epoxy suitable for fine-scale kerfless array fabrication, including photolithographic processing. Material properties have been investigated as a function of cure temperature and for compatibility with solvents. By increasing the cure temperature, the crosslinking between the epoxy and the hardener in- creases, resulting in a higher glass transition temperature. The cured epoxy consequently has better resistance to both heat and solvents. An elevated cure temperature, near 100°C, is required to optimize material properties for photolithography on 1-3 piezocomposites. The acoustic properties of the epoxy have also been studied. These are similar to other epoxies used in piezocomposite fabrication and no significant changes have been observed for the different cure temperatures.


Subject(s)
Epoxy Compounds/analysis , Epoxy Compounds/chemistry , Manufactured Materials , Micro-Electrical-Mechanical Systems/instrumentation , Transducers , Equipment Design , Materials Testing , Miniaturization
SELECTION OF CITATIONS
SEARCH DETAIL
...