Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Elife ; 102021 06 25.
Article in English | MEDLINE | ID: mdl-34169835

ABSTRACT

Integrin adhesion complexes regulate cytoskeletal dynamics during cell migration. Adhesion activates phosphorylation of integrin-associated signaling proteins, including Cas (p130Cas, BCAR1), by Src-family kinases. Cas regulates leading-edge protrusion and migration in cooperation with its binding partner, BCAR3. However, it has been unclear how Cas and BCAR3 cooperate. Here, using normal epithelial cells, we find that BCAR3 localization to integrin adhesions requires Cas. In return, Cas phosphorylation, as well as lamellipodia dynamics and cell migration, requires BCAR3. These functions require the BCAR3 SH2 domain and a specific phosphorylation site, Tyr 117, that is also required for BCAR3 downregulation by the ubiquitin-proteasome system. These findings place BCAR3 in a co-regulatory positive-feedback circuit with Cas, with BCAR3 requiring Cas for localization and Cas requiring BCAR3 for activation and downstream signaling. The use of a single phosphorylation site in BCAR3 for activation and degradation ensures reliable negative feedback by the ubiquitin-proteasome system.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Crk-Associated Substrate Protein/genetics , Guanine Nucleotide Exchange Factors/genetics , Pseudopodia/metabolism , Signal Transduction , Adaptor Proteins, Signal Transducing/metabolism , Cell Adhesion , Cell Line , Crk-Associated Substrate Protein/metabolism , Epithelial Cells , Guanine Nucleotide Exchange Factors/metabolism , Humans , Integrins/metabolism , Phosphorylation , src Homology Domains
2.
Proc Natl Acad Sci U S A ; 114(5): E717-E726, 2017 01 31.
Article in English | MEDLINE | ID: mdl-28096348

ABSTRACT

Regeneration requires cells to regulate proliferation and patterning according to their spatial position. Positional memory is a property that enables regenerating cells to recall spatial information from the uninjured tissue. Positional memory is hypothesized to rely on gradients of molecules, few of which have been identified. Here, we quantified the global abundance of transcripts, proteins, and metabolites along the proximodistal axis of caudal fins of uninjured and regenerating adult zebrafish. Using this approach, we uncovered complex overlapping expression patterns for hundreds of molecules involved in diverse cellular functions, including development, bioelectric signaling, and amino acid and lipid metabolism. Moreover, 32 genes differentially expressed at the RNA level had concomitant differential expression of the encoded proteins. Thus, the identification of proximodistal differences in levels of RNAs, proteins, and metabolites will facilitate future functional studies of positional memory during appendage regeneration.


Subject(s)
Animal Fins/physiology , Zebrafish , Animals , Female , Male , Metabolomics , Proteomics , Regeneration/physiology , Transcriptome , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish/physiology
3.
Proc Natl Acad Sci U S A ; 113(42): E6382-E6390, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27698112

ABSTRACT

In both mice and humans, pluripotent stem cells (PSCs) exist in at least two distinct states of pluripotency, known as the naïve and primed states. Our understanding of the intrinsic and extrinsic factors that enable PSCs to self-renew and to transition between different pluripotent states is important for understanding early development. In mouse embryonic stem cells (mESCs), Wnt proteins stimulate mESC self-renewal and support the naïve state. In human embryonic stem cells (hESCs), Wnt/ß-catenin signaling is active in naïve-state hESCs and is reduced or absent in primed-state hESCs. However, the role of Wnt/ß-catenin signaling in naïve hESCs remains largely unknown. Here, we demonstrate that inhibition of the secretion of Wnts or inhibition of the stabilization of ß-catenin in naïve hESCs reduces cell proliferation and colony formation. Moreover, we show that addition of recombinant Wnt3a partially rescues cell proliferation in naïve hESCs caused by inhibition of Wnt secretion. Notably, inhibition of Wnt/ß-catenin signaling in naïve hESCs did not cause differentiation. Instead, it induced primed hESC-like proteomic and metabolic profiles. Thus, our results suggest that naïve hESCs secrete Wnts that activate autocrine or paracrine Wnt/ß-catenin signaling to promote efficient self-renewal and inhibit the transition to the primed state.


Subject(s)
Cell Differentiation , Cell Self Renewal , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Wnt Signaling Pathway , Apoptosis , Benzothiazoles/pharmacology , Biomarkers , Cell Cycle/genetics , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Proliferation , Cell Self Renewal/drug effects , Cell Self Renewal/genetics , Colony-Forming Units Assay , Flow Cytometry , Fluorescent Antibody Technique , Gene Expression Profiling , Gene Expression Regulation, Developmental , Heterocyclic Compounds, 3-Ring/pharmacology , Human Embryonic Stem Cells/drug effects , Humans , Models, Biological , Proteomics/methods , RNA, Small Interfering/genetics , Wnt Signaling Pathway/drug effects
4.
Biochem Biophys Res Commun ; 477(4): 952-956, 2016 09 02.
Article in English | MEDLINE | ID: mdl-27387232

ABSTRACT

Unlike mammals, zebrafish can regenerate their injured spinal cord and regain control of caudal tissues. It was recently shown that Wnt/ß-catenin signaling is necessary for spinal cord regeneration in the larval zebrafish. However, the molecular mechanisms of regeneration may or may not be conserved between larval and adult zebrafish. To test this, we assessed the role of Wnt/ß-catenin signaling after spinal cord injury in the adult zebrafish. We show that Wnt/ß-catenin signaling is increased after spinal cord injury in the adult zebrafish. Moreover, overexpression of Dkk1b inhibited Wnt/ß-catenin signaling in the regenerating spinal cord of adult zebrafish. Dkk1b overexpression also inhibited locomotor recovery, axon regeneration, and glial bridge formation in the injured spinal cord. Thus, our data illustrate a conserved role for Wnt/ß-catenin signaling in adult and larval zebrafish spinal cord regeneration.


Subject(s)
Spinal Cord Injuries/physiopathology , Spinal Cord Regeneration/physiology , Spinal Cord/physiopathology , Wnt Signaling Pathway , Zebrafish/physiology , beta Catenin/metabolism , Animals , Spinal Cord/pathology , Spinal Cord Injuries/pathology , Up-Regulation , Zebrafish/anatomy & histology
5.
Proc Natl Acad Sci U S A ; 113(21): E2945-54, 2016 May 24.
Article in English | MEDLINE | ID: mdl-27162353

ABSTRACT

The Wnt signaling pathways play pivotal roles in carcinogenesis. Modulation of the cell-surface abundance of Wnt receptors is emerging as an important mechanism for regulating sensitivity to Wnt ligands. Endocytosis and degradation of the Wnt receptors Frizzled (Fzd) and lipoprotein-related protein 6 (LRP6) are regulated by the E3 ubiquitin ligases zinc and ring finger 3 (ZNRF3) and ring finger protein 43 (RNF43), which are disrupted in cancer. In a genome-wide small interfering RNA screen, we identified the deubiquitylase ubiquitin-specific protease 6 (USP6) as a potent activator of Wnt signaling. USP6 enhances Wnt signaling by deubiquitylating Fzds, thereby increasing their cell-surface abundance. Chromosomal translocations in nodular fasciitis result in USP6 overexpression, leading to transcriptional activation of the Wnt/ß-catenin pathway. Inhibition of Wnt signaling using Dickkopf-1 (DKK1) or a Porcupine (PORCN) inhibitor significantly decreased the growth of USP6-driven xenograft tumors, indicating that Wnt signaling is a key target of USP6 during tumorigenesis. Our study defines an additional route to ectopic Wnt pathway activation in human disease, and identifies a potential approach to modulate Wnt signaling for therapeutic benefit.


Subject(s)
DNA-Binding Proteins/metabolism , Frizzled Receptors/metabolism , Neoplasms, Experimental/metabolism , Oncogene Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Ubiquitin Thiolesterase/metabolism , Ubiquitination , Wnt Signaling Pathway , Animals , DNA-Binding Proteins/genetics , Frizzled Receptors/genetics , HEK293 Cells , HeLa Cells , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Mice , Neoplasms, Experimental/genetics , Oncogene Proteins/genetics , Proto-Oncogene Proteins/genetics , Ubiquitin Thiolesterase/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
6.
J Virol ; 90(5): 2240-53, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26656717

ABSTRACT

UNLABELLED: The 1918-1919 influenza pandemic remains the single greatest infectious disease outbreak in the past century. Mouse and nonhuman primate infection models have shown that the 1918 virus induces overly aggressive innate and proinflammatory responses. To understand the response to viral infection and the role of individual 1918 genes on the host response to the 1918 virus, we examined reassortant avian viruses nearly identical to the pandemic 1918 virus (1918-like avian virus) carrying either the 1918 hemagglutinin (HA) or PB2 gene. In mice, both genes enhanced 1918-like avian virus replication, but only the mammalian host adaptation of the 1918-like avian virus through reassortment of the 1918 PB2 led to increased lethality. Through the combination of viral genetics and host transcriptional profiling, we provide a multidimensional view of the molecular mechanisms by which the 1918 PB2 gene drives viral pathogenicity. We demonstrate that 1918 PB2 enhances immune and inflammatory responses concomitant with increased cellular infiltration in the lung. We also show for the first time, that 1918 PB2 expression results in the repression of both canonical and noncanonical Wnt signaling pathways, which are crucial for inflammation-mediated lung regeneration and repair. Finally, we utilize regulatory enrichment and network analysis to define the molecular regulators of inflammation, epithelial regeneration, and lung immunopathology that are dysregulated during influenza virus infection. Taken together, our data suggest that while both HA and PB2 are important for viral replication, only 1918 PB2 exacerbates lung damage in mice infected with a reassortant 1918-like avian virus. IMPORTANCE: As viral pathogenesis is determined in part by the host response, understanding the key host molecular driver(s) of virus-mediated disease, in relation to individual viral genes, is a promising approach to host-oriented drug efforts in preventing disease. Previous studies have demonstrated the importance of host adaptive genes, HA and PB2, in mediating disease although the mechanisms by which they do so are still poorly understood. Here, we combine viral genetics and host transcriptional profiling to show that although both 1918 HA and 1918 PB2 are important mediators of efficient viral replication, only 1918 PB2 impacts the pathogenicity of an avian influenza virus sharing high homology to the 1918 pandemic influenza virus. We demonstrate that 1918 PB2 enhances deleterious inflammatory responses and the inhibition of regeneration and repair functions coordinated by Wnt signaling in the lungs of infected mice, thereby promoting virus-associated disease.


Subject(s)
Influenza A Virus, H1N1 Subtype/enzymology , Influenza A Virus, H1N1 Subtype/pathogenicity , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , RNA-Dependent RNA Polymerase/metabolism , Viral Proteins/metabolism , Virulence Factors/metabolism , Wnt Signaling Pathway/immunology , Animals , Cell Line , Disease Models, Animal , Female , Gene Expression Profiling , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Inflammation/pathology , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Lung/pathology , Lung/virology , Mice, Inbred BALB C , RNA-Dependent RNA Polymerase/genetics , Reassortant Viruses/enzymology , Reassortant Viruses/pathogenicity , Viral Proteins/genetics , Virulence , Virulence Factors/genetics
7.
Sci Signal ; 8(358): eg1, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25564676

ABSTRACT

The 2014 breakthroughs fell into four main areas: innate immunity, host-microbe interactions, cell death signaling, and methodological advances in the study of cell signaling. Nominations included new discoveries about signaling in innate immune cells, innate immune functions for lymphoid and nonhematological cells, and the importance of host-microbe interactions for the regulation of host physiology. Also this year, we received nominations highlighting molecular mechanisms by which p53 contributes to the pathology of chronic inflammation and how signaling pathways mediate programmed necrotic cell death. Finally, 2014 saw the use of new techniques to study cell signaling and identify drug targets, such as the in vivo use of RNA interference to study signaling in T cells and new computational methods to study large datasets of different data types.


Subject(s)
Cell Biology/trends , Cell Death/physiology , Host-Pathogen Interactions/physiology , Immunity, Innate/physiology , Signal Transduction/physiology , Awards and Prizes , Signal Transduction/immunology
8.
Stem Cell Reports ; 2(1): 9-17, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24511465

ABSTRACT

Statins improve recovery from traumatic brain injury and show promise in preventing Alzheimer disease. However, the mechanisms by which statins may be therapeutic for neurological conditions are not fully understood. In this study, we present the initial evidence that oral administration of simvastatin in mice enhances Wnt signaling in vivo. Concomitantly, simvastatin enhances neurogenesis in cultured adult neural progenitor cells as well as in the dentate gyrus of adult mice. Finally, we find that statins enhance Wnt signaling through regulation of isoprenoid synthesis and not through cholesterol. These findings provide direct evidence that Wnt signaling is enhanced in vivo by simvastatin and that this elevation of Wnt signaling is required for the neurogenic effects of simvastatin. Collectively, these data add to the growing body of evidence that statins may have therapeutic value for treating certain neurological disorders.


Subject(s)
Hippocampus/cytology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Neurogenesis/drug effects , Simvastatin/pharmacology , Wnt Signaling Pathway/drug effects , Animals , Cells, Cultured , Hippocampus/metabolism , Hydroxymethylglutaryl CoA Reductases/chemistry , Hydroxymethylglutaryl CoA Reductases/genetics , Hydroxymethylglutaryl CoA Reductases/metabolism , Mice , Mice, Inbred C57BL , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Wnt Proteins/metabolism , beta Catenin/metabolism
9.
Sci Signal ; 7(307): eg1, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24399293

ABSTRACT

The editorial staff and distinguished scientists in the field of cell signaling nominated diverse research as advances for 2013. Breakthroughs in understanding how spatial and temporal signals control cellular behavior ranged from filtering high-frequency stimuli to interpreting circadian inputs. This year's nominations also highlight the importance of understanding cell signaling in the context of physiology and disease, such as links between the nervous system and cancer. Furthermore, the application of new techniques to study cell signaling--such as optogenetics, DNA editing with CRISPR-Cas9, and sequencing untranslated regions of transcripts--continues to expand the realm and impact of signaling research.


Subject(s)
Biomedical Research/methods , Signal Transduction , Animals , Biomedical Research/trends , Cell Physiological Phenomena , Circadian Rhythm , Humans , Models, Biological , Nervous System Physiological Phenomena , TOR Serine-Threonine Kinases/metabolism , Time Factors
10.
J Biol Chem ; 288(48): 34658-70, 2013 Nov 29.
Article in English | MEDLINE | ID: mdl-24114839

ABSTRACT

Advances in phosphoproteomics have made it possible to monitor changes in protein phosphorylation that occur at different steps in signal transduction and have aided the identification of new pathway components. In the present study, we applied this technology to advance our understanding of the responses of melanoma cells to signaling initiated by the secreted ligand WNT3A. We started by comparing the phosphopeptide patterns of cells treated with WNT3A for different periods of time. Next, we integrated these data sets with the results from a siRNA screen that targeted protein kinases. This integration of siRNA screening and proteomics enabled us to identify four kinases that exhibit altered phosphorylation in response to WNT3A and that regulate a luciferase reporter of ß-catenin-responsive transcription (ß-catenin-activated reporter). We focused on one of these kinases, an atypical PKC kinase, protein kinase N1 (PKN1). Reducing the levels of PKN1 with siRNAs significantly enhances activation of ß-catenin-activated reporter and increases apoptosis in melanoma cell lines. Using affinity purification followed by mass spectrometry, we then found that PKN1 is present in a protein complex with a WNT3A receptor, Frizzled 7, as well as with proteins that co-purify with Frizzled 7. These data establish that the protein kinase PKN1 inhibits Wnt/ß-catenin signaling and sensitizes melanoma cells to cell death stimulated by WNT3A.


Subject(s)
Melanoma/metabolism , Protein Kinase C/genetics , Wnt Signaling Pathway/genetics , Wnt3A Protein/metabolism , Apoptosis , Cell Line, Tumor , Frizzled Receptors/metabolism , Gene Expression Regulation, Neoplastic , Humans , Melanoma/genetics , Melanoma/pathology , Phosphorylation , Protein Kinase C/metabolism , RNA, Small Interfering , Signal Transduction , Wnt3A Protein/antagonists & inhibitors , Wnt3A Protein/genetics , beta Catenin/metabolism
11.
Genes Dev ; 27(9): 1032-45, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23651857

ABSTRACT

To identify key regulators of human brain tumor maintenance and initiation, we performed multiple genome-wide RNAi screens in patient-derived glioblastoma multiforme (GBM) stem cells (GSCs). These screens identified the plant homeodomain (PHD)-finger domain protein PHF5A as differentially required for GSC expansion, as compared with untransformed neural stem cells (NSCs) and fibroblasts. Given PHF5A's known involvement in facilitating interactions between the U2 snRNP complex and ATP-dependent helicases, we examined cancer-specific roles in RNA splicing. We found that in GSCs, but not untransformed controls, PHF5A facilitates recognition of exons with unusual C-rich 3' splice sites in thousands of essential genes. PHF5A knockdown in GSCs, but not untransformed NSCs, astrocytes, or fibroblasts, inhibited splicing of these genes, leading to cell cycle arrest and loss of viability. Notably, pharmacologic inhibition of U2 snRNP activity phenocopied PHF5A knockdown in GSCs and also in NSCs or fibroblasts overexpressing MYC. Furthermore, PHF5A inhibition compromised GSC tumor formation in vivo and inhibited growth of established GBM patient-derived xenograft tumors. Our results demonstrate a novel viability requirement for PHF5A to maintain proper exon recognition in brain tumor-initiating cells and may provide new inroads for novel anti-GBM therapeutic strategies.


Subject(s)
Brain Neoplasms/physiopathology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Glioblastoma/physiopathology , RNA Interference , Animals , Brain Neoplasms/genetics , Cell Cycle Checkpoints , Cell Line , Cell Proliferation , Cell Survival/genetics , Gene Expression , Gene Expression Regulation, Neoplastic , Genome-Wide Association Study , Glioblastoma/genetics , Humans , Mice , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/metabolism , Protein Binding , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , RNA Splicing , RNA-Binding Proteins , Trans-Activators , Transplantation, Heterologous
12.
Hum Mol Genet ; 22(16): 3259-68, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23595882

ABSTRACT

We report a novel gene for a parkinsonian disorder. X-linked parkinsonism with spasticity (XPDS) presents either as typical adult onset Parkinson's disease or earlier onset spasticity followed by parkinsonism. We previously mapped the XPDS gene to a 28 Mb region on Xp11.2-X13.3. Exome sequencing of one affected individual identified five rare variants in this region, of which none was missense, nonsense or frame shift. Using patient-derived cells, we tested the effect of these variants on expression/splicing of the relevant genes. A synonymous variant in ATP6AP2, c.345C>T (p.S115S), markedly increased exon 4 skipping, resulting in the overexpression of a minor splice isoform that produces a protein with internal deletion of 32 amino acids in up to 50% of the total pool, with concomitant reduction of isoforms containing exon 4. ATP6AP2 is an essential accessory component of the vacuolar ATPase required for lysosomal degradative functions and autophagy, a pathway frequently affected in Parkinson's disease. Reduction of the full-size ATP6AP2 transcript in XPDS cells and decreased level of ATP6AP2 protein in XPDS brain may compromise V-ATPase function, as seen with siRNA knockdown in HEK293 cells, and may ultimately be responsible for the pathology. Another synonymous mutation in the same exon, c.321C>T (p.D107D), has a similar molecular defect of exon inclusion and causes X-linked mental retardation Hedera type (MRXSH). Mutations in XPDS and MRXSH alter binding sites for different splicing factors, which may explain the marked differences in age of onset and manifestations.


Subject(s)
Chromosomes, Human, X , Genetic Diseases, X-Linked/genetics , Genetic Variation , Muscle Spasticity/genetics , Parkinsonian Disorders/genetics , Receptors, Cell Surface/genetics , Vacuolar Proton-Translocating ATPases/genetics , Aged , Binding Sites/genetics , Cells, Cultured , Codon, Nonsense , Exome , Female , Frameshift Mutation , Gene Expression Regulation , Gene Knockdown Techniques , Genetic Diseases, X-Linked/metabolism , Genetic Linkage , HEK293 Cells , Humans , Male , Mental Retardation, X-Linked/genetics , Mental Retardation, X-Linked/metabolism , Muscle Spasticity/metabolism , Mutation, Missense , Parkinsonian Disorders/metabolism , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/metabolism , Sequence Analysis, RNA , Vacuolar Proton-Translocating ATPases/chemistry , Vacuolar Proton-Translocating ATPases/metabolism
13.
F1000Res ; 2: 134, 2013.
Article in English | MEDLINE | ID: mdl-24358901

ABSTRACT

The inability of targeted BRAF inhibitors to produce long-lasting improvement in the clinical outcome of melanoma highlights a need to identify additional approaches to inhibit melanoma growth. Recent studies have shown that activation of the Wnt/ß-catenin pathway decreases tumor growth and cooperates with ERK/MAPK pathway inhibitors to promote apoptosis in melanoma. Therefore, the identification of Wnt/ß-catenin regulators may advance the development of new approaches to treat this disease. In order to move towards this goal we performed a large scale small-interfering RNA (siRNA) screen for regulators of ß-catenin activated reporter activity in human HT1080 fibrosarcoma cells. Integrating large scale siRNA screen data with phosphoproteomic data and bioinformatics enrichment identified a protein, FAM129B, as a potential regulator of Wnt/ß-catenin signaling.  Functionally, we demonstrated that siRNA-mediated knockdown of FAM129B in A375 and A2058 melanoma cell lines inhibits WNT3A-mediated activation of a ß-catenin-responsive luciferase reporter and inhibits expression of the endogenous Wnt/ß-catenin target gene, AXIN2. We also demonstrate that FAM129B knockdown inhibits apoptosis in melanoma cells treated with WNT3A. These experiments support a role for FAM129B in linking Wnt/ß-catenin signaling to apoptosis in melanoma.

14.
Proc Natl Acad Sci U S A ; 109(12): 4485-90, 2012 Mar 20.
Article in English | MEDLINE | ID: mdl-22392999

ABSTRACT

Signal transduction pathways play diverse, context-dependent roles in vertebrate development. In studies of human embryonic stem cells (hESCs), conflicting reports claim Wnt/ß-catenin signaling promotes either self-renewal or differentiation. We use a sensitive reporter to establish that Wnt/ß-catenin signaling is not active during hESC self-renewal. Inhibiting this pathway over multiple passages has no detrimental effect on hESC maintenance, whereas activating signaling results in loss of self-renewal and induction of mesoderm lineage genes. Following exposure to pathway agonists, hESCs exhibit a delay in activation of ß-catenin signaling, which led us to postulate that Wnt/ß-catenin signaling is actively repressed during self-renewal. In support of this hypothesis, we demonstrate that OCT4 represses ß-catenin signaling during self-renewal and that targeted knockdown of OCT4 activates ß-catenin signaling in hESCs. Using a fluorescent reporter of ß-catenin signaling in live hESCs, we observe that the reporter is activated in a very heterogeneous manner in response to stimulation with Wnt ligand. Sorting cells on the basis of their fluorescence reveals that hESCs with elevated ß-catenin signaling express higher levels of differentiation markers. Together these data support a dominant role for Wnt/ß-catenin signaling in the differentiation rather than self-renewal of hESCs.


Subject(s)
Embryonic Stem Cells/cytology , Octamer Transcription Factor-3/metabolism , Wnt Proteins/metabolism , beta Catenin/metabolism , Animals , Cell Differentiation , Cell Lineage , Cell Proliferation , Coculture Techniques , Genes, Reporter , Humans , Mice , Models, Biological , Signal Transduction
15.
J Cell Biol ; 194(5): 737-50, 2011 Sep 05.
Article in English | MEDLINE | ID: mdl-21875946

ABSTRACT

Receptor-like tyrosine kinase (RYK) functions as a transmembrane receptor for the Wnt family of secreted protein ligands. Although RYK undergoes endocytosis in response to Wnt, the mechanisms that regulate its internalization and concomitant activation of Wnt signaling are unknown. We discovered that RYK both physically and functionally interacts with the E3 ubiquitin ligase Mindbomb 1 (MIB1). Overexpression of MIB1 promotes the ubiquitination of RYK and reduces its steady-state levels at the plasma membrane. Moreover, we show that MIB1 is sufficient to activate Wnt/ß-catenin (CTNNB1) signaling and that this activity depends on endogenous RYK. Conversely, in loss-of-function studies, both RYK and MIB1 are required for Wnt-3A-mediated activation of CTNNB1. Finally, we identify the Caenorhabditis elegans orthologue of MIB1 and demonstrate a genetic interaction between ceMIB and lin-18/RYK in vulva development. These findings provide insights into the mechanisms of Wnt/RYK signaling and point to novel targets for the modulation of Wnt signaling.


Subject(s)
Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction/physiology , Ubiquitin-Protein Ligases/metabolism , Wnt Proteins/pharmacology , Wnt Signaling Pathway , beta Catenin/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Animal Structures/abnormalities , Animals , Caenorhabditis elegans/embryology , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Cell Line, Tumor , Cell Membrane/metabolism , Chloroquine/pharmacology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Female , Gene Expression/genetics , HEK293 Cells , HeLa Cells , Humans , Intracellular Membranes/metabolism , Leupeptins/pharmacology , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Lysosomes/drug effects , Lysosomes/metabolism , Mice , Mutation/physiology , Phosphorylation/drug effects , Phosphorylation/physiology , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors , Protein Binding/physiology , Protein Interaction Domains and Motifs/physiology , Protein Interaction Mapping/methods , Protein Transport/physiology , RNA, Small Interfering/genetics , Receptor Protein-Tyrosine Kinases/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transfection , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination/physiology , Wnt3A Protein/pharmacology , rab5 GTP-Binding Proteins/metabolism
16.
PLoS One ; 4(9): e6892, 2009 Sep 03.
Article in English | MEDLINE | ID: mdl-19727391

ABSTRACT

The multi-protein beta-catenin destruction complex tightly regulates beta-catenin protein levels by shuttling beta-catenin to the proteasome. Glycogen synthase kinase 3beta (GSK3beta), a key serine/threonine kinase in the destruction complex, is responsible for several phosphorylation events that mark beta-catenin for ubiquitination and subsequent degradation. Because modulation of both beta-catenin and GSK3beta activity may have important implications for treating disease, a complete understanding of the mechanisms that regulate the beta-catenin/GSK3beta interaction is warranted. We screened an arrayed lentivirus library expressing small hairpin RNAs (shRNAs) targeting 5,201 human druggable genes for silencing events that activate a beta-catenin pathway reporter (BAR) in synergy with 6-bromoindirubin-3'oxime (BIO), a specific inhibitor of GSK3beta. Top screen hits included shRNAs targeting dihydrofolate reductase (DHFR), the target of the anti-inflammatory compound methotrexate. Exposure of cells to BIO plus methotrexate resulted in potent synergistic activation of BAR activity, reduction of beta-catenin phosphorylation at GSK3-specific sites, and accumulation of nuclear beta-catenin. Furthermore, the observed synergy correlated with inhibitory phosphorylation of GSK3beta and was neutralized upon inhibition of phosphatidyl inositol 3-kinase (PI3K). Linking these observations to inflammation, we also observed synergistic inhibition of lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines (TNFalpha, IL-6, and IL-12), and increased production of the anti-inflammatory cytokine IL-10 in peripheral blood mononuclear cells exposed to GSK3 inhibitors and methotrexate. Our data establish DHFR as a novel modulator of beta-catenin and GSK3 signaling and raise several implications for clinical use of combined methotrexate and GSK3 inhibitors as treatment for inflammatory disease.


Subject(s)
Glycogen Synthase Kinase 3/metabolism , Lentivirus/metabolism , Signal Transduction , Tetrahydrofolate Dehydrogenase/metabolism , beta Catenin/metabolism , Anti-Inflammatory Agents/pharmacology , Cell Line , Humans , Indoles/metabolism , Interleukin-12/metabolism , Interleukin-6/metabolism , Methotrexate/pharmacology , Models, Biological , Oximes/metabolism , Phosphorylation , Tumor Necrosis Factor-alpha/metabolism
17.
Sci Signal ; 2(70): pt4, 2009 May 12.
Article in English | MEDLINE | ID: mdl-19436058

ABSTRACT

High-throughput genetic screens have exponentially increased the functional annotation of the genome over the past 10 years. Likewise, genome-scale efforts to map DNA methylation, chromatin state and occupancy, messenger RNA expression patterns, and disease-associated genetic polymorphisms, and proteome-wide efforts to map protein-protein interactions, have also created vast resources of data. An emerging trend involves combining multiple types of data, referred to as integrative screening. Examples include papers that report integrated data generated from large-scale RNA interference screens on the Wnt/beta-catenin pathway with either genotypic or proteomic data in colorectal cancer. These studies demonstrate the power of data integration to generate focused, validated data sets and to identify high-confidence candidate genes for follow-up experiments. We present the ongoing evolution and new strategies for the integrative screening approach with respect to understanding and treating human disease.


Subject(s)
Genome, Human/genetics , RNA Interference , RNA, Small Interfering/genetics , Animals , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/physiopathology , Genotype , Humans , Models, Biological , Protein Binding , Proteome/metabolism , Signal Transduction , Wnt Proteins/genetics , Wnt Proteins/metabolism , Wnt Proteins/physiology , beta Catenin/genetics , beta Catenin/metabolism , beta Catenin/physiology
18.
Trends Biochem Sci ; 34(3): 101-4, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19217300

ABSTRACT

Numerous studies have pointed to interactions between the tumor suppressor von Hippel-Lindau (VHL) and the oncogenic Wnt-beta-catenin signaling cascade; however, the mechanism of this crosstalk has remained elusive. Among other roles, VHL can promote the stabilization of Jade-1. Now, recent findings provide compelling evidence that Jade-1 ubiquitylates beta-catenin, leading to its degradation. Thus, the loss of VHL, as seen in clear cell renal cell carcinoma, could lead to tumor formation through beta-catenin de-repression.


Subject(s)
Von Hippel-Lindau Tumor Suppressor Protein/physiology , beta Catenin/physiology , Carcinoma, Renal Cell/metabolism , Homeodomain Proteins/metabolism , Homeodomain Proteins/physiology , Humans , Models, Biological , Signal Transduction/physiology , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/physiology , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , beta Catenin/metabolism
19.
Sci Signal ; 1(45): ra12, 2008 Nov 11.
Article in English | MEDLINE | ID: mdl-19001663

ABSTRACT

The identification and characterization of previously unidentified signal transduction molecules has expanded our understanding of biological systems and facilitated the development of mechanism-based therapeutics. We present a highly validated small interfering RNA (siRNA) screen that functionally annotates the human genome for modulation of the Wnt/beta-catenin signal transduction pathway. Merging these functional data with an extensive Wnt/beta-catenin protein interaction network produces an integrated physical and functional map of the pathway. The power of this approach is illustrated by the positioning of siRNA screen hits into discrete physical complexes of proteins. Similarly, this approach allows one to filter discoveries made through protein-protein interaction screens for functional contribution to the phenotype of interest. Using this methodology, we characterized AGGF1 as a nuclear chromatin-associated protein that participates in beta-catenin-mediated transcription in human colon cancer cells.


Subject(s)
Trans-Activators/metabolism , Wnt Proteins/physiology , beta Catenin/physiology , Angiogenic Proteins/genetics , Angiogenic Proteins/physiology , Cell Line, Tumor , Colonic Neoplasms , Gene Expression Profiling , Genome, Human , Humans , Protein Binding , Protein Interaction Mapping , RNA, Small Interfering/metabolism , Signal Transduction , Wnt Proteins/genetics , beta Catenin/genetics
20.
Dev Biol ; 324(2): 236-44, 2008 Dec 15.
Article in English | MEDLINE | ID: mdl-18926812

ABSTRACT

The induction and migration of neural crest cells (NCCs) are essential to the development of craniofacial structures and the peripheral nervous system. A critical step in the development of NCCs is the epithelial to mesenchymal transition (EMT) that they undergo in order to initiate migration. Several transcription factors are important for the NCC EMT. However, less is known about the effectors regulating changes in cell adhesion, the cytoskeleton, and cell motility associated with the EMT or about specific changes in the behavior of cells undergoing EMT in vivo. We used time-lapse imaging of NCCs in the zebrafish hindbrain to show that NCCs undergo a stereotypical series of behaviors during EMT. We find that loss of cell adhesion and membrane blebbing precede filopodial extension and the onset of migration. Live imaging of actin dynamics shows that actin localizes differently in blebs and filopodia. Moreover, we find that disruption of myosin II or Rho-kinase (ROCK) activity inhibits NCC blebbing and causes reduced NCC EMT. These data reveal roles for myosin II and ROCK in NCC EMT in vivo, and provide a detailed characterization of NCC behavior during EMT that will form a basis for further mechanistic studies.


Subject(s)
Cell Differentiation , Myosin Type II/metabolism , Neural Crest/embryology , Zebrafish/embryology , rho-Associated Kinases/metabolism , Actins/metabolism , Animals , Animals, Genetically Modified/embryology , Animals, Genetically Modified/metabolism , Cell Adhesion , Cell Membrane/metabolism , Cell Movement , Cytokinesis , Epithelium/embryology , Mesoderm/embryology , Neural Crest/ultrastructure , Pseudopodia/physiology , Rhombencephalon/embryology , Zebrafish/metabolism , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...